Skip to main content

3D shape analysis using deep learning

Project description

Project Status: Active – The project has reached a stable, usable state and is being actively developed. Python Version PyPI Downloads Wheel Development Status Tests Coverage Status Code style: black

Cellshape logo by Matt De Vries


Cellshape-cluster is an easy-to-use tool to analyse the cluster cells by their shape using deep learning and, in particular, deep-embedded-clustering. The tool provides the ability to train popular graph-based or convolutional autoencoders on point cloud or voxel data of 3D single cell masks as well as providing pre-trained networks for inference.

To install

pip install cellshape-cluster

Usage

Basic usage:

import torch
from cellshape_cloud import CloudAutoEncoder
from cellshape_cluster import DeepEmbeddedClustering

autoencoder = CloudAutoEncoder(
    num_features=128, 
    k=20, 
    encoder_type="dgcnn"
)

model = DeepEmbeddedClustering(autoencoder=autoencoder, 
                               num_clusters=10,
                               alpha=1.0)

points = torch.randn(1, 2048, 3)

recon, features, clusters = model(points)

To load a trained graph-based autoencoder and perform deep embedded clustering:

import torch
from torch.utils.data import DataLoader

import cellshape_cloud as cloud
import cellshape_cluster as cluster
from cellshape_cloud.vendor.chamfer_distance import ChamferDistance

dataset_dir = "path/to/pointcloud/dataset/"
autoencoder_model = "path/to/autoencoder/model.pt"
num_features = 128
k = 20
encoder_type = "dgcnn"
num_clusters = 10
num_epochs = 1
learning_rate = 0.00001
gamma = 1
divergence_tolerance = 0.01
output_dir = "path/to/output/"


autoencoder = CloudAutoEncoder(
    num_features=128, 
    k=20, 
    encoder_type="dgcnn"
)

checkpoint = torch.load(autoencoder_model)

autoencoder.load_state_dict(checkpoint['model_state_dict']

model = DeepEmbeddedClustering(autoencoder=autoencoder, 
                               num_clusters=10,
                               alpha=1.0)

dataset = cloud.PointCloudDataset(dataset_dir)

dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=False) # it is very important that shuffle=False here!
dataloader_inf = DataLoader(dataset, batch_size=1, shuffle=False) # it is very important that batch_size=1 and shuffle=False here!

optimizer = torch.optim.Adam(
    model.parameters(),
    lr=learning_rate * 16 / batch_size,
    betas=(0.9, 0.999),
    weight_decay=1e-6,
)

reconstruction_criterion = ChamferDistance()
cluster_criterion = nn.KLDivLoss(reduction="sum")

train(
    model,
    dataloader,
    dataloader_inf,
    num_epochs,
    optimizer,
    reconstruction_criterion,
    cluster_criterion,
    update_interval,
    gamma,
    divergence_tolerance,
    output_dir
)

Parameters

  • autoencoder: CloudAutoEncoder or VoxelAutoEncoder.
    Instance of autoencoder class from cellshape-cloud or cellshape-voxel
  • num_clusters: int.
    The number of clusters to use in deep embedded clustering algorithm.
  • alpha: float.
    Degrees of freedom for the Student's t-distribution. Xie et al. (ICML, 2016) let alpha=1 for all experiments.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cellshape-cluster-0.0.19rc0.tar.gz (11.4 kB view details)

Uploaded Source

Built Distribution

cellshape_cluster-0.0.19rc0-py3-none-any.whl (12.4 kB view details)

Uploaded Python 3

File details

Details for the file cellshape-cluster-0.0.19rc0.tar.gz.

File metadata

  • Download URL: cellshape-cluster-0.0.19rc0.tar.gz
  • Upload date:
  • Size: 11.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for cellshape-cluster-0.0.19rc0.tar.gz
Algorithm Hash digest
SHA256 fb4c15b6311e0e32c597876da3f75803429005c7a2ace8d40518789f10fcc26b
MD5 26248ba17fd13390050747de843aabf5
BLAKE2b-256 d6da79cec7e0dd7b8118b01e726ecd6bf240f5d79260c0e712f3e6e51e0cf127

See more details on using hashes here.

File details

Details for the file cellshape_cluster-0.0.19rc0-py3-none-any.whl.

File metadata

File hashes

Hashes for cellshape_cluster-0.0.19rc0-py3-none-any.whl
Algorithm Hash digest
SHA256 b804a861e70e54a66ea44913f54277980673802c09f6dd6c30db812a14ffe769
MD5 5bc197e8ddcc2a15084b81c439433b7c
BLAKE2b-256 120a742dfe500d4aa2fe25a942e7b0f4a8fe875a3c40f464c5b7e76a40621947

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page