Skip to main content

3D shape analysis using deep learning

Project description

Project Status: Active – The project has reached a stable, usable state and is being actively developed. Python Version PyPI Downloads Wheel Development Status Tests Coverage Status Code style: black

cellshape-cluster


Cellshape-cluster is an easy-to-use tool to analyse the cluster cells by their shape using deep learning and, in particular, deep-embedded-clustering. The tool provides the ability to train popular graph-based or convolutional autoencoders on point cloud or voxel data of 3D single cell masks as well as providing pre-trained networks for inference.

To install

pip install cellshape-cluster

Usage

Basic usage:

import torch
from cellshape_cloud import CloudAutoEncoder
from cellshape_cluster import DeepEmbeddedClustering

autoencoder = CloudAutoEncoder(
    num_features=128, 
    k=20, 
    encoder_type="dgcnn"
)

model = DeepEmbeddedClustering(autoencoder=autoencoder, 
                               num_clusters=10,
                               alpha=1.0)

points = torch.randn(1, 2048, 3)

recon, features, clusters = model(points)

To load a trained graph-based autoencoder and perform deep embedded clustering:

import torch
from torch.utils.data import DataLoader

import cellshape_cloud as cloud
import cellshape_cluster as cluster
from cellshape_cloud.vendor.chamfer_distance import ChamferDistance

dataset_dir = "path/to/pointcloud/dataset/"
autoencoder_model = "path/to/autoencoder/model.pt"
num_features = 128
k = 20
encoder_type = "dgcnn"
num_clusters = 10
num_epochs = 1
learning_rate = 0.00001
gamma = 1
divergence_tolerance = 0.01
output_dir = "path/to/output/"


autoencoder = CloudAutoEncoder(
    num_features=128, 
    k=20, 
    encoder_type="dgcnn"
)

checkpoint = torch.load(autoencoder_model)

autoencoder.load_state_dict(checkpoint['model_state_dict']

model = DeepEmbeddedClustering(autoencoder=autoencoder, 
                               num_clusters=10,
                               alpha=1.0)

dataset = cloud.PointCloudDataset(dataset_dir)

dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=False) # it is very important that shuffle=False here!
dataloader_inf = DataLoader(dataset, batch_size=1, shuffle=False) # it is very important that batch_size=1 and shuffle=False here!

optimizer = torch.optim.Adam(
    model.parameters(),
    lr=learning_rate * 16 / batch_size,
    betas=(0.9, 0.999),
    weight_decay=1e-6,
)

reconstruction_criterion = ChamferDistance()
cluster_criterion = nn.KLDivLoss(reduction="sum")

train(
    model,
    dataloader,
    dataloader_inf,
    num_epochs,
    optimizer,
    reconstruction_criterion,
    cluster_criterion,
    update_interval,
    gamma,
    divergence_tolerance,
    output_dir
)

Parameters

  • autoencoder: CloudAutoEncoder or VoxelAutoEncoder.
    Instance of autoencoder class from cellshape-cloud or cellshape-voxel
  • num_clusters: int.
    The number of clusters to use in deep embedded clustering algorithm.
  • alpha: float.
    Degrees of freedom for the Student's t-distribution. Xie et al. (ICML, 2016) let alpha=1 for all experiments.

For developers

  • Fork the repository
  • Clone your fork
git clone https://github.com/USERNAME/cellshape-cluster 
  • Install an editable version (-e) with the development requirements (dev)
cd cellshape-cluster
pip install -e .[dev] 
  • To install pre-commit hooks to ensure formatting is correct:
pre-commit install
  • To release a new version:

Firstly, update the version with bump2version (bump2version patch, bump2version minor or bump2version major). This will increment the package version (to a release candidate - e.g. 0.0.1rc0) and tag the commit. Push this tag to GitHub to run the deployment workflow:

git push --follow-tags

Once the release candidate has been tested, the release version can be created with:

bump2version release

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cellshape-cluster-0.0.7.tar.gz (10.4 kB view details)

Uploaded Source

Built Distribution

cellshape_cluster-0.0.7-py3-none-any.whl (10.9 kB view details)

Uploaded Python 3

File details

Details for the file cellshape-cluster-0.0.7.tar.gz.

File metadata

  • Download URL: cellshape-cluster-0.0.7.tar.gz
  • Upload date:
  • Size: 10.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.5

File hashes

Hashes for cellshape-cluster-0.0.7.tar.gz
Algorithm Hash digest
SHA256 f7e7f8831e215d868f7a3266612fe22dbb8da42706e920baa05fd29590d675b1
MD5 bcb42652e8b498cf97381b43181d1b95
BLAKE2b-256 492163c0b6b5452bf5eb555f202cbfc783eeb839d4d0b7d62d339bee32a87472

See more details on using hashes here.

File details

Details for the file cellshape_cluster-0.0.7-py3-none-any.whl.

File metadata

File hashes

Hashes for cellshape_cluster-0.0.7-py3-none-any.whl
Algorithm Hash digest
SHA256 edfebab2f1e0e52e3fa5dd6599dde9611d686dac21b1a6dedf671383d82677d1
MD5 0a5437229e8e4bd21ec98bb8e0da79fe
BLAKE2b-256 9c87d62ce5f8217131119ca36934bb4d88b097bc00886a97bcc0094c728129bb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page