Skip to main content

3D shape analysis using deep learning

Project description

Project Status: Active – The project has reached a stable, usable state and is being actively developed. Python Version PyPI Downloads Wheel Development Status Tests Coverage Status Code style: black

Cellshape logo by Matt De Vries


Cellshape-voxel is an easy-to-use tool to analyse the shapes of cells using deep learning and, in particular, 3D convolutional neural networks. The tool provides the ability to train 3D convolutional autoencoders on 3D single cell masks as well as providing pre-trained networks for inference.

To install

pip install cellshape-voxel

Usage

Basic usage

import torch
from cellshape_voxel import VoxelAutoEncoder
from cellshape_voxel.encoders.resnet import Bottleneck

model = VoxelAutoEncoder(num_layers_encoder=3,
                         num_layers_decoder=3,
                         encoder_type="resnet",
                         input_shape=(64, 64, 64, 1),
                         filters=(32, 64, 128, 256, 512),
                         num_features=50,
                         bias=True,
                         activations=False,
                         batch_norm=True,
                         leaky=True,
                         neg_slope=0.01,
                         resnet_depth=10,
                         resnet_block_inplanes=(64, 128, 256, 512),
                         resnet_block=Bottleneck,
                         n_input_channels=1,
                         no_max_pool=True,
                         resnet_shortcut_type="B",
                         resnet_widen_factor=1.0)

volume = torch.randn(1, 64, 64, 64, 1)

recon, features = model(volume)

To train a 3D resnet autoencoder on masks of cells or nuclei:

import torch
from torch.utils.data import DataLoader
import cellshape_voxel as voxel


input_dir = "path/to/binary/mask/files/"
batch_size = 16
learning_rate = 0.0001
num_epochs = 1
output_dir = "path/to/save/output/"

model = voxel.AutoEncoder(
    num_layers_encoder=4,
    num_layers_decoder=4,
    input_shape=(64, 64, 64, 1),
    encoder_type="resnet",
)

dataset = voxel.VoxelDataset(
    PATH_TO_DATASET, transform=None, img_size=(300, 300, 300)
)

dataloader = voxel.DataLoader(dataset, batch_size=batch_size, shuffle=True)

optimizer = torch.optim.Adam(
    model.parameters(),
    lr=learning_rate * 16 / batch_size,
    betas=(0.9, 0.999),
    weight_decay=1e-6,
)

voxel.train(model, dataloader, 1, optimizer, output_dir)

Parameters

  • num_features: int.
    The size of the latent space of the autoencoder. If you have rectangular images, make sure your image size is the maximum of the width and height
  • k: int.
    The number of neightbours to use in the k-nearest-neighbours graph construction.
  • encoder_type: int.
    The type of encoder: 'foldingnet' or 'dgcnn'
  • decoder_type: int.
    The type of decoder: 'foldingnet' or 'dgcnn'

For developers

  • Fork the repository
  • Clone your fork
git clone https://github.com/USERNAME/cellshape-voxel 
  • Install an editable version (-e) with the development requirements (dev)
cd cellshape-voxel
pip install -e .[dev] 
  • To install pre-commit hooks to ensure formatting is correct:
pre-commit install
  • To release a new version:

Firstly, update the version with bump2version (bump2version patch, bump2version minor or bump2version major). This will increment the package version (to a release candidate - e.g. 0.0.1rc0) and tag the commit. Push this tag to GitHub to run the deployment workflow:

git push --follow-tags

Once the release candidate has been tested, the release version can be created with:

bump2version release

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cellshape-voxel-0.0.5.tar.gz (8.0 kB view details)

Uploaded Source

Built Distribution

cellshape_voxel-0.0.5-py3-none-any.whl (8.0 kB view details)

Uploaded Python 3

File details

Details for the file cellshape-voxel-0.0.5.tar.gz.

File metadata

  • Download URL: cellshape-voxel-0.0.5.tar.gz
  • Upload date:
  • Size: 8.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.5

File hashes

Hashes for cellshape-voxel-0.0.5.tar.gz
Algorithm Hash digest
SHA256 1aa57cbe2dac9363e0ec02eb8a95fd674e380775e9daa94705b037d2cd729b1b
MD5 64ef6c9e7108b05ab64a7c3123dd5bd9
BLAKE2b-256 c242f3557e0e1016802824f46bdf62274ca3e61a575a8d37f64f3586dbb4f4c1

See more details on using hashes here.

File details

Details for the file cellshape_voxel-0.0.5-py3-none-any.whl.

File metadata

File hashes

Hashes for cellshape_voxel-0.0.5-py3-none-any.whl
Algorithm Hash digest
SHA256 e260a16c06f9fa99d4629df21c385b6e3baced1b6bf7300af4ddce81e75450d3
MD5 11a5a8acd75b3dd0cce0055c52e3c47b
BLAKE2b-256 a8e16252080b75acd5e3367e278f39083bc58513f0e62e7e6d4f5453e552cc8a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page