3D shape analysis using deep learning
Project description
3D single-cell shape analysis of cancer cells using geometric deep learning
This is a package for automatically learning and clustering cell shapes from 3D images. Please refer to our preprint on bioRxiv here
cellshape is available for everyone.
cellshape is the main package which is made up of sub-packages:
- cellshape-helper: https://github.com/Sentinal4D/cellshape-helper
- cellshape-cloud: https://github.com/Sentinal4D/cellshape-cloud
- cellshape-voxel: https://github.com/Sentinal4D/cellshape-voxel
- cellshape-cluster: https://github.com/Sentinal4D/cellshape-cluster
Installation and requirements
Dependencies
The software requires Python 3.7 or greater, PyTorch
, torchvision
, pyntcloud
, numpy
, scikit-learn
, tensorboard
, tqdm
, datetime
. This repo makes extensive use of cellshape-cloud
, cellshape-cluster
, cellshape-helper
, and cellshape-voxel
. to reproduce our results in our paper, only cellshape-cloud
, cellshape-cluster
are needed.
To install
- We recommend creating a new conda environment:
conda create --name cellshape-env python=3.8
conda activate cellshape-env
pip install --upgrade pip
- Install cellshape from pip
pip install cellshape
Hardware requirements
We have tested this software of an Ubuntu 20.04LTS with 128Gb RAM and NVIDIA Quadro RTX 6000 GPU.
Data structure
Our data is structured in the following way:
Data/
all_data_stats.csv
Plate1/
stacked_pointcloud/
Binimetinib/
0010_0001_accelerator_20210315_bakal01_erk_main_21-03-15_12-37-27.ply
...
Blebbistatin/
...
Plate2/
stacked_pointcloud/
Plate3/
stacked_pointcloud/
Data availability
Datasets to reproduce our results in our paper are available here.
Usage
The following steps assume that one already has point cloud representations of cells or nuclei. If you need to generate point clouds from 3D binary masks please go to cellshape-helper
.
The training procedure follows two steps:
- Training the dynamic graph convolutional foldingnet (DFN) autoencoder to automatically learn shape features.
- Adding the clustering layer to refine shape features and learn shape classes simultaneous.
Inference can be done after each step.
1. Train DFN autoencoder
python
import torch
from torch.utils.data import DataLoader
from datetime import datetime
import logging
import cellshape_cloud as cscloud
import cellshape_cluster as cscluster
from cellshape_cloud.vendor.chamfer_distance import ChamferLoss
from cellshape_cloud.helpers.reports import get_experiment_name
input_dir = "/home/mvries/Documents/CellShape/DatasetForTesting/"
batch_size = 20
learning_rate_autoencoder = 0.00001
learning_rate_clustering = 0.000001
num_features = 128
num_clusters = 3
num_epochs_autoencoder = 1
num_epochs_clustering = 3
k=20
encoder_type="dgcnn"
decoder_type = "foldingnetbasic"
output_dir = "/home/mvries/Documents/Testing_output/"
gamma = 1
alpha = 1.0
divergence_tolerance = 0.01
update_interval = 1
autoencoder = cscloud.CloudAutoEncoder(num_features=num_features,
k=k,
encoder_type=encoder_type,
decoder_type=decoder_type)
dataset = cscloud.PointCloudDataset(input_dir)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
criterion = ChamferLoss()
optimizer = torch.optim.Adam(
autoencoder.parameters(),
lr=learning_rate_autoencoder * 16 / batch_size,
betas=(0.9, 0.999),
weight_decay=1e-6,
)
name_logging, name_model, name_writer, name = get_experiment_name(
model=autoencoder, output_dir=output_dir
)
logging_info = name_logging, name_model, name_writer, name
now = datetime.now().strftime("%d/%m/%Y %H:%M:%S")
logging.basicConfig(filename=name_logging, level=logging.INFO)
logging.info(f"Started training model {name} at {now}.")
output_cloud = cscloud.train(autoencoder,
dataloader,
num_epochs_autoencoder,
criterion,
optimizer,
logging_info)
autoencoder = output_cloud[0]
model = cscluster.DeepEmbeddedClustering(autoencoder=autoencoder,
num_clusters=num_clusters)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=False)
# it is very important that shuffle=False here!
dataloader_inf = DataLoader(dataset, batch_size=1, shuffle=False)
# it is very important that batch_size=1 and shuffle=False here!
optimizer = torch.optim.Adam(
model.parameters(),
lr=learning_rate_clustering * 16 / batch_size,
betas=(0.9, 0.999),
weight_decay=1e-6,
)
reconstruction_criterion = ChamferLoss()
cluster_criterion = torch.nn.KLDivLoss(reduction="sum")
cscluster.train(
model,
dataloader,
dataloader_inf,
num_epochs_clustering,
optimizer,
reconstruction_criterion,
cluster_criterion,
update_interval,
gamma,
divergence_tolerance,
logging_info
)
For developers
- Fork the repository
- Clone your fork
git clone https://github.com/USERNAME/cellshape
- Install an editable version (
-e
) with the development requirements (dev
)
cd cellshape
pip install -e .[dev]
- To install pre-commit hooks to ensure formatting is correct:
pre-commit install
- To release a new version:
Firstly, update the version with bump2version (bump2version patch
,
bump2version minor
or bump2version major
). This will increment the
package version (to a release candidate - e.g. 0.0.1rc0
) and tag the
commit. Push this tag to GitHub to run the deployment workflow:
git push --follow-tags
Once the release candidate has been tested, the release version can be created with:
bump2version release
References
[1] An Tao, 'Unsupervised Point Cloud Reconstruction for Classific Feature Learning', GitHub Repo, 2020
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file cellshape-0.0.15rc0.tar.gz
.
File metadata
- Download URL: cellshape-0.0.15rc0.tar.gz
- Upload date:
- Size: 11.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.10.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 23b4b305f950253d71482e37fbfad6d40ce4facea2d7bc3815e7128642cb2530 |
|
MD5 | 188660253b46fb2a41a74445c69d8d3f |
|
BLAKE2b-256 | 77f08f3a9a6d7a507b165c70c9fec1d5d6ff31a785e1f4ece8f46cc79be891e1 |
File details
Details for the file cellshape-0.0.15rc0-py3-none-any.whl
.
File metadata
- Download URL: cellshape-0.0.15rc0-py3-none-any.whl
- Upload date:
- Size: 10.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.10.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 98567f258f3ecc0e6d5fdbb63834fa7bf593ed0ca5d9229f9c2d0e6d16ac435b |
|
MD5 | d4c813d2de09c3a45be7d6acbcb5ba76 |
|
BLAKE2b-256 | cd54f2e11af1bc55f6fc2d8ac6cfa64654898dc405c9924d7b5e884dce289488 |