Skip to main content

CellSium – Cell Simulator for microfluidic microcolonies

Project description

https://img.shields.io/pypi/v/cellsium.svg https://img.shields.io/badge/docs-latest-brightgreen.svg?style=flat https://github.com/modsim/CellSium/actions/workflows/python-test.yml/badge.svg https://codecov.io/gh/modsim/CellSium/branch/main/graph/badge.svg?token=L36RQXYBW7 https://img.shields.io/badge/Docker-image-green?logo=docker https://img.shields.io/pypi/l/cellsium.svg

CellSium - Cell Simulator for microfluidic microcolonies

https://raw.githubusercontent.com/modsim/CellSium/animation/output.gif

CellSium example simulation result

Front Matter

CellSium is a cell simulator developed for the primary application of generating realistically looking images of bacterial microcolonies, which may serve as ground truth for machine learning training processes.

Publication

If you use CellSium within scientific research, we ask you to cite our publication:

Sachs CC, Ruzaeva K, Seiffarth J, Wiechert W, Berkels B, Nöh K (2022) CellSium: versatile cell simulator for microcolony ground truth generation Bioinformatics Advances, Volume 2, Issue 1, 2022, vbac053, doi: 10.1093/bioadv/vbac053

It is available on the Bioinformatics Advances homepage at DOI: 10.1093/bioadv/vbac053 <https://doi.org/10.1093/bioadv/vbac053>.

Documentation

The documentation to CellSium can be built using Sphinx, or be found readily built at Read the Docs.

License

CellSium is available under the BSD license (see LICENSE.rst / license section).

Installation

Installation using pip

CellSium can be installed via pip, ideally create and activate an environment beforehand to install CellSium in.

> python -m pip install cellsium

Installation using conda

CellSium is available in the modsim Anaconda channel as well, using packages from the conda-forge channel. It can be installed with the following commands:

> conda install -c modsim -c conda-forge -y cellsium

Usage

Once installed, run CellSium via python -m cellsium, specifying the desired entrypoint and options, such as outputs. CellSium is built modular, various output modules can be activated simultaneously. To get an overview of the available options, use the --help switch. Furthermore, the main mode of setting tunable parameters are so called tunables, which can be set from the command line using the -t switches. A list of tunables can be shown using the --tunables-show argument.

> python -m cellsium --help
usage: __main__.py [-v] [-q] [-c CELL] [-p] [-w] [-o OUTPUT] [-h] [-m MODULE]
               [--Output {COCOOutput,CsvOutput,FluorescenceRenderer,GenericMaskOutput,JsonPickleSerializer,MeshOutput,NoisyUnevenIlluminationPhaseContrast,PhaseContrastRenderer,PlainRenderer,PlotRenderer,QuickAndDirtyTableDumper,SvgRenderer,TiffOutput,TrackMateXML,UnevenIlluminationPhaseContrast,YOLOOutput}]
               [--PlacementSimulation {Box2D,Chipmunk,NoPlacement}] [-t TUNABLE] [--tunables-show] [--tunables-load TUNABLES_LOAD] [--tunables-save TUNABLES_SAVE]

optional arguments:
  -h, --help            show this help message and exit
  -o OUTPUT, --output-file OUTPUT
  -w, --overwrite
  -p, --prefix
  -c CELL, --cell CELL
  -q, --quiet
  -v, --verbose
  -m MODULE, --module MODULE
  --Output {COCOOutput,CsvOutput,FluorescenceRenderer,GenericMaskOutput,JsonPickleSerializer,MeshOutput,NoisyUnevenIlluminationPhaseContrast,PhaseContrastRenderer,PlainRenderer,PlotRenderer,QuickAndDirtyTableDumper,SvgRenderer,TiffOutput,TrackMateXML,UnevenIlluminationPhaseContrast,YOLOOutput}
  --PlacementSimulation {Box2D,Chipmunk,NoPlacement}
  -t TUNABLE, --tunable TUNABLE
  --tunables-show
  --tunables-load TUNABLES_LOAD
  --tunables-save TUNABLES_SAVE

You can for example run a default simulation by just starting CellSium, the results will be shown interactively using matplotlib:

> python -m cellsium

For more in-depth usage examples, please see the examples section of the documentation.

Docker

An alternative to installing CellSium locally is running it via Docker. To run CellSium without interactive (GUI) elements, the following Docker command can be used, with parameters to CellSium being appended.

> docker run --tty --interactive --rm --volume `pwd`:/data --user `id -u` ghcr.io/modsim/cellsium

To use interactive (GUI) elements such as the PlotRenderer, an X server must be reachable; under Linux the following command can be used:

> docker run --tty --interactive --rm --volume `pwd`:/data --user `id -u` --env DISPLAY=$DISPLAY --volume /tmp/.X11-unix:/tmp/.X11-unix ghcr.io/modsim/cellsium

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cellsium-1.0.0.tar.gz (48.7 kB view details)

Uploaded Source

Built Distribution

cellsium-1.0.0-py2.py3-none-any.whl (61.6 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file cellsium-1.0.0.tar.gz.

File metadata

  • Download URL: cellsium-1.0.0.tar.gz
  • Upload date:
  • Size: 48.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for cellsium-1.0.0.tar.gz
Algorithm Hash digest
SHA256 293136969d372306c9c62c64d86e4f613bd4bf0730e324794e41f031ce4a9352
MD5 880e0a31d42f1477484ec1719fb20cd9
BLAKE2b-256 76fb020401a01cdcdd08b9044a1ab25ca81f38035d2fe3bc114c52b432063eba

See more details on using hashes here.

File details

Details for the file cellsium-1.0.0-py2.py3-none-any.whl.

File metadata

  • Download URL: cellsium-1.0.0-py2.py3-none-any.whl
  • Upload date:
  • Size: 61.6 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for cellsium-1.0.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 a031cc453d66ceec31d28aee14f705a354544de7e9b56b04a7cab23e7e2a03ed
MD5 fecc7d18c6478c87201aa558e3f0bda4
BLAKE2b-256 27a84648a69c5a7140d04a1f6b22b58462d52325a1b26566b04730ca459a0740

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page