cellsnake
Project description
A command line tool for easy and scalable single cell RNA sequencing analysis
Our main Snakemake workflow is here: https://github.com/sinanugur/scrna-workflow
Installation
Please use Bioconda repo for installation. Mamba installation is also recommended. To create a clean environment and install cellsnake, type:
conda install mamba -c conda-forge
mamba create -n cellsnake -c bioconda -c conda-forge cellsnake
Apple Silicon computers have to force Osx64, you can install like this.
conda install mamba -c conda-forge
CONDA_SUBDIR=osx-64 mamba create -n cellsnake -c bioconda -c conda-forge cellsnake
Check if the installation works by calling the main script.
conda activate cellsnake
cellsnake --help
Then install the R packages by typing:
cellsnake --install-packages
You should see this message if all the packages are available:
cellsnake --install-packages
[1] "All packages were installed...OK"
Cellsnake auto install most of the packages when necessary or during the creation of environment but it is good to check if they are installable. You can then move the environment to an offline location as well if required. We recommend our Docker image and it is a better solution for installation problems. Podman also works fine with our Docker image.
See our Docker repo: https://hub.docker.com/r/sinanugur/cellsnake
Quick start examples
Run cellsnake
in a clean directory and cellsnake
will create the required directories while running. You may download publicly available fetal brain dataset to test your cellsnake
installation. The link is here.
https://www.dropbox.com/sh/1qn2odtnci0vvtr/AADPxHH-GR4h-OuQG0TLQyxWa?dl=0
After downloading the dataset, just point the data folder which contains the two datasets, this will trigger a standard cellsnake workflow:
cellsnake standard data
After the pipeline finishes, browse the output files. You can also integrate these two samples which makes sense.
cellsnake integrate data
That is it. Lets work on the integrated object from now on, we already processed the samples separately.
Let's do a minimal run, this will also generate a clustree plot as well which can be used to investigate the optimal resolution.
cellsnake integrated minimal analyses_integrated/seurat/integrated.rds
You want a resolution of 0.1 after checking clustree plot, then you can trigger a run with this resolution.
cellsnake integrated standard analyses_integrated/seurat/integrated.rds --resolution 0.1
It is also possible to use automatic resolution selection, however this might be very slow in large datasets.
cellsnake integrated standard analyses_integrated/seurat/integrated.rds --resolution auto
See our documentation for detailed explanations and to read full features: https://cellsnake.readthedocs.io/
Options and Arguments
Usage:
cellsnake <command> <INPUT> [options] [--unlock|--remove] [--dry]
cellsnake integrated <command> <INPUT> [options] [--unlock|--remove] [--dry]
cellsnake --generate-template
cellsnake --install-packages
cellsnake (-h | --help)
cellsnake --version
commands:
minimal Run cellsnake with minimal workflow.
standard Run cellsnake with standard workflow.
advanced Run cellsnake with advanced workflow.
clustree Run cellsnake with clustree workflow.
integrate Run cellsnake to integrate samples under analyses folder.
This option expects you have already finished processing multiple samples.
main arguments:
INPUT Input directory or a file to process (if a directory given, batch mode is ON).
--configfile <text> Config file name in YAML format, for example, "config.yaml". No default but can be created with --generate-template.
--metadata <text> Metadata file name in CSV, TSV or Excel format, for example, "metadata.csv", header required, first column sample name. No default but can be created with --generate-template.
--metadata_column <text> Metadata column for differential expression analysis [default: condition].
other arguments:
--gene <gene or filename> Create publication ready plots for a gene or a list of genes from a text file.
main options:
--percent_mt <double> Maximum mitochondrial gene percentage cutoff,
for example, 5 or 10, write "auto" for auto detection [default: 10].
--resolution <double> Resolution for cluster detection, write "auto" for auto detection [default: 0.8].
other options:
--doublet_filter <bool> [default: True] #this may fail on some samples
--percent_rp <double> [default: 0] #Ribosomal genes minimum percentage (0-100), default no filtering
--min_cells <integer> [default: 3] #seurat default, recommended
--min_features <integer> [default: 200] #seurat default, recommended, nFeature_RNA
--max_features <integer> [default: Inf] #seurat default, nFeature_RNA, 5000 can be a good cutoff
--min_molecules <integer> [default: 0] #seurat default, nCount_RNA, min_features usually handles this so keep it 0
--max_molecules <integer> [default: Inf] #seurat default, nCount_RNA, to filter potential doublets, doublet filtering is already default, so keep this Inf
--highly_variable_features <integer> [default: 2000] #seurat defaults, recommended
--variable_selection_method <text> [default: vst] #seurat defaults, recommended
--normalization_method <text> [default: LogNormalize]
--scale_factor <integer> [default: 10000]
--logfc_threshold <double> [default: 0.25]
--test_use <text> [default: wilcox]
--mapping <text> [default: org.Hs.eg.db] #you may install others from Bioconductor, this is for human
--organism <text> [default: hsa] #alternatives https://www.genome.jp/kegg/catalog/org_list.html
--species <text> [default: human] for cellchat, #only human or mouse is accepted
plotting parameters:
--min_percentage_to_plot <double> [default: 2] #only show clusters more than % of cells on the legend
--show_labels <bool> [default: True] #
--marker_plots_per_cluster_n <integer> [default: 20] #plot summary marker plots for top markers
--umap_markers_plot <bool> [default: True]
--tsne_markers_plot <bool> [default: False]
annotation options:
--singler_ref <text> [default: BlueprintEncodeData] # https://bioconductor.org/packages/release/data/experiment/vignettes/celldex/inst/doc/userguide.html#1_Overview
--celltypist_model <text> [default: Immune_All_Low.pkl] #refer to Celltypist for another model
microbiome options:
--kraken_db_folder <text> No default, you need to provide a folder with kraken2 database
--taxa <text> [default: genus] # available options "domain", "kingdom", "phylum", "class", "order", "family", "genus", "species"
--microbiome_min_cells <integer> [default: 1]
--microbiome_min_features <integer> [default: 3]
--confidence <double> [default: 0.05] #see kraken2 manual
--min_hit_groups <integer> [default: 4] #see kraken2 manual
integration options:
--dims <integer> [default: 30] #refer to Seurat for more details
--reduction <text> [default: cca] #refer to Seurat for more details
others:
--generate-template Generate config file template and metadata template in the current directory.
--install-packages Install, reinstall or check required R packages.
-j <integer>, --jobs <integer> Total CPUs. [default: 2]
-u, --unlock Rescue stalled jobs (Try this if the previous job ended prematurely or currently failing).
-r, --remove Delete all output files (this won't affect input files).
-d, --dry Dry run, nothing will be generated.
-h, --help Show this screen.
--version Show version.
Output
The cellsnake
main executable will generate two main folders: analyses and results. If an integrated dataset available, analyses_integrated and results_integrated will be created.
The main directory structure will look like this, resolution and percent_mt can be visible on directory names. These are the only parameters that will generate a separate folders.
results/integrated/percent_mt~auto/resolution~0.8/ #for regular samples
results_integrated/integrated/percent_mt~auto/resolution~0.8/ #for integrated samples
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file cellsnake-0.2.0.12.tar.gz
.
File metadata
- Download URL: cellsnake-0.2.0.12.tar.gz
- Upload date:
- Size: 1.4 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d8b812c5063a34cf07da900881517b1946c66f2ad2a89092168edaff5693cb7d |
|
MD5 | 50889671c6912ade967817b9a0b14a45 |
|
BLAKE2b-256 | ba22a45637a59df0904654c6f9d30e9c18642e0963e9caa39f712e9f36d295fc |