Skip to main content

General purpose library

Project description

Cengal compatibility and requirements

  • Target platforms: Win32, Linux, OS X, Android, iOS, Emscripten
  • Target architectures: x64, x86, ARM
  • Target interpreters: CPython, PyPy
  • Recommended Python versions: 3.8+

Installation

pip install cengal will install prebuilt wheels for both Windows and Linux

Documentation

Cengal Wiki

For example Cengal Coroutines Concepts & Usage

Exclusive Features: No Alternatives Online

Run concurently following components in a Single (!) Thread

  • own blocking CPU-bound function
  • third-party blocking CPU-bound function
  • Tkinter application
  • CustomTkinter application
  • asyncio-based file reading task.

Examples

YouTube Showcase

Watch the video

Source code

Tutorial

True Interprocess Shared Memory (Proof of Concept Stage)

Share your data between your Python processes (2 processes currently) and work with them as usual. Work across different processes is made turn by turn (fast operation: using full memory barrier instead of system calls)

Supported types (currently):

  • list - Unlike multiprocessing.shared_memory.ShareableList: mutable and resizable between different processes, supports other containers (lists, tuples, dicts) as an items and implements all list methods. Faster than multiprocessing.shared_memory.ShareableList.
  • dict - currently immutable
  • tuple
  • str
  • bytes
  • bytearray
  • bool
  • float - Unlike values in multiprocessing.shared_memory.ShareableList, supports Addition Assignment (shared_list[20] += 999.3) and all other native methods and operators
  • int - int64, currently. Unlike values in multiprocessing.shared_memory.ShareableList, supports Addition Assignment (shared_list[15] += 999) and all other native methods and operators
  • None

Examples

shared_memory_example.py

and smaller:

from multiprocessing import Process
from cengal.hardware.memory.shared_memory import *


shared_memory_name = 'test_shared_mem'
shared_memory_size = 200 * 1024 * 1024
switches = 1000
changes_per_switch = 2000


def work(manager, shared_data)
    index = 0
    while index < switches:
        with wait_my_turn(manager):
            # emulatin our working process
            for i in range(changes_per_switch):
                shared_data[1] += 1

def second_process():
    consumer: SharedMemory = SharedMemory('test_shmem', False)
    consumer.wait_for_messages()
    with wait_my_turn(consumer):
        shared_data = consumer.take_message()
    
    work(consumer, shared_data)


creator: SharedMemory = SharedMemory(shared_memory_name, True, shared_memory_size)
p = Process(target=second_process)
p.start()
creator.wait_consumer_ready()
with wait_my_turn(creator):
    data = [
        'hello',
        0,
        (8, 2.0, False),
        {
            b'world': -6,
            5: 4
        }
    ]
    shared_data = creator.put_message(data)

work(creator, shared_data)
p.join()

Performance Benchmark results

Shared list container (which is not yet fully optimizes currently) is already faster than multiprocessing.shared_memory.ShareableList. And unlike multiprocessing.shared_memory.ShareableList supports Addition Assignment (shared_list[15] += 999) and all other native methods and operators of items. It provides an ability to make more than 30000000 reads/writes per second of an int64 value (shared_list[2] = 1234 / val = shared_list[7]) or more than 1450000 addition assignments per second (shared_list[15] += 999).

Benchmark Results

Roadmap

  • Continuosly moving more logic to Cython
  • Implement mutable dict and set using an appropricate C hashmap library or C++ code (depending what will be faster in our case)
  • Increase number of interacting processes from 2 to variable value
  • Implement garbage collector for shared data in addition to manual free() call
  • Implement an appropriate Service for cengal.parallel_execution.coroutines - for comfortable shared memory usage inside an async code (including asyncio)
  • Improve memory allocation algorithm in an attempt of making it faster

Async LMDB database API

An example of usage (unit test of the module):

Async logging into LMDB database

Developer can observe their logs in runtime using cengal.parallel_execution.coroutines.coro_tools.loop_administration.admin_tk module (made with Async Tkinter GUI):

An example of usage of the admin_tk:

Alternatively, developer can load logs in off-line mode using Log Viewer application (made with async Tkinter GUI):

Async Tkinter and Customtkinter

Async wxPython

Async QT (PySide, PySide2, PySide6, PyQt4, PyQt5, PyQt6)

Async PyTermGUI

Transparent background for your desktop applications (TBA)

  • Target OS: Windows 11, Windows 10, Windows 8, Windows 7, Windows Vista.
  • Target frameworks: PySide, PyQt, Kivy, PyWebView

title , title

Tkinter True Borderless apps for Windows platform (TBA)

  • Target OS: Windows 11, Windows 10, Windows 8, Windows 7, Windows Vista.
  • Target frameworks: CustomTkinter, Tkinter, ttkbootstrap, ...

title

Cengal Coroutines and Asyncio Administration and Monitoring Page

Observe loop performance, services state and coroutines list with details. Use an async interactive console in order to interact with your application from inside.

YouTube Showcase

Watch the video

Examples

admin_test.py

Modules with unique functionality

  • "parallel_execution"
    • "coroutines" - asynchronous loop with almost preemptive multitasking within the single thread. Brings an async approach to an unmodified Tkinter, Qt, Kivy, etc. Unlike asyncio/trio/curio, it uses microkernel (services-based) approach which makes it highly- and easily-expandable. Can be executed both independently (asyncio/uvloop loop will be injected within the Cengal-coroutine when needed) and within already executed asyncio/uvloop loop. Can be used from the PyScript for the Web app creation.
      • "coro_standard_services" - set of standard services. You can replace standard service by yours for your app or for third-party module without code changes: by registering your own alias.
        • "loop_yield" - automatically kinda yield from your loops from time to time (priority based). Can be used to make a proper coroutine (which will not hangs on its endless loops) even from the long-running CPU-hungry third-party function (by function's bytecode modification made in runtime).
        • "tkinter" - make your Tkninter app async easily. Run any number of asynchronous Tkinter apps in single thread.
        • "db" - async wrapper around LMDB which provides an appropriate async API
        • "asyncio_loop" - use asyncio-based code directly from your async Cengal-coroutine neither Trio nor Curio able to to do this
        • "wait_coro" - 'put_atomic' request is an analogue of Trio's Nurseries for list of one or more coroutines; 'put_fastest' - returns when at least N of coroutines from the list were done successfully; etc.
        • "read_write_locker" - sync primitive usefull for DB creation (was made for a TagDB)
        • "remote_nodes" - in progress - connect to any opened listener/port of the node (TCP/UDP/Unix_Socket - doesn't matter), and identify your receiver by name (defined once - during the connection creation process). Uses improved version of the asyncio.streams as a backend in order to have a back pressure and an improved performance (see "efficient_streams" module description below).
      • "coro_tools" - tools
        • "await_coro" - await Cengal-coroutine or await for a call to the Cengal-service from your asyncio code
        • "low_latency" - use standard json module from your coroutines without hangs on huge Json-data (which usually hung even fast json implementation like orjson)
      • "integrations" -
        • "Qt" - wrapper around an unmodified Qt (supports: PySide, PySide2, PySide6, PyQt4, PyQt5, PyQt6). Adds asynchronous behavior to Slots. Doesn't require total reimplementation of your Qt app unlike other suggestions and competitors.
        • "customtkinter" - wrapper around an unmodified customtkinter. Implements an additional call, Customtkinter async apps needs to be executed for a proper work
        • "nicegui" - wrapper around an unmodified NiceGUI. Execute nicegui instance from within your code (administrative page for example). Build your pages in an asynchronous way in order to improve your server latency (NiceGUI makes it in a sync way).
        • "uvicorn" - wrapper around an unmodified uvicorn. Run uvicorn as a usual asyncio coroutine.
        • "uvloop" - an easy-install for a uvloop (if awailable).
        • "PyTermGUI" - wrapper around an unmodified PyTermGUI. Adds asynchronous behavior. No competitors currently.
    • "asyncio" - tools for an asyncio
      • "efficient_streams" - more efficient remake of an asyncion.streams. Better awailable traffic limits utilisation. Less kerner-calls number. Back pressure. Unlike asyncio, UDP version is planned but is not ready yet.
  • "code_flow_control" -
    • "python_bytecode_manipulator" - modify your or third-party Python function's code in runtime easily
    • "chained_flow" - easy to use monad. Execute your your code if all/none/some of steps were completed withot an exceptions. Use all/none/some resutls of your steps at the final part of monad execution.
    • "multiinterface_essence" - Make your model and add different interfaces to it easily. Can be used for example in games: create "chair", "ball", "person" models and add to them your library of general interfaces like "touch", "push", "sit", "shot", "burn", "wet", etc.
  • "hardware" - hardware related
    • "memory" - RAM related
      • "barriers" - fast full memory barriers for both x86/x64 and ARM (Windows, Linux, OS X, iOS, Android).
  • "time_management" -
    • "high_precision_sync_sleep" - provides an ability to put your thread into legetimate sleep for at least 10x smaller time period than time.sleep() from the Python's Standard Library able to do on same Operating System: uses nanosleep() on Linux and periodic SwitchToThread() on Windows.
    • "cpu_clock_cycles" - Returnes value of RDTSCP on x86/x86_64 or CNTVCT_EL0 on ARM. Fast implementation: 6-12 times faster than all other competitors on Github. Note: CPU Time Stamp Counter (TSC) is not depends on actual current CPU frequency in modern CPUs (starting from around year 2007) so can be safely used as a high precision clock (see time_management.cpu_clock module). Windows, Linux and other Operating Systems are using it internaly.
    • "cpu_clock" - like perf_counter() but 25% faster. Supports both x86/x86_64 and ARM. cpu_clock is slightly faster than cpu_clock_cycles because double (float in Python terms) transfered from C-code to Python code more efficiently than 64-bit int (which needs an addition internal logic inside the Python itself for conversion). Highest-precision possible since it is CPU Time Stamp Counter based which is not depends on actual current CPU frequency in modern CPUs (starting from around year 2007) so can be safely used as a high precision clock (and Windows, Linux and other Operating Systems are using it internaly in this way). Benchmark: cpu_clock_test.py

Some Other modules

  • "parallel_execution"
    • "coroutines" -
      • "coro_tools" - tools
        • "wait_coro" - decorate your coroutine in order to be able to execute it from the plain sunc code as a sync function
        • "run_in_loop" - serves the same purpose as an asyncio.run() call
        • "prepare_loop" - creates and returns loop. You may use it later
    • "asyncio" - tools for an asyncio
      • "run_loop" - similar to asyncio.run() but ends only when all background tasks will be finished (main coro can be finished long before this moment).
      • "timed_yield" - simple (dum-dum but faster) version of the "loop_yield" (see above) but made directly for an asyncio.
  • "bulk_pip_actions" - install lists of required modules. Lists can be different for a different operating systems
  • "code_inspection" -
    • "auto_line_tracer" - smart and easy to use line logger (current func name, file, lines numbers, surrounding code)
    • "line_tracer" - - easy to use line logger (current func name, file, line number)
    • "line_profiling" - confinient work with a line_profiler if awailable
  • "data_containers" - usefull data containers like stack, fast fifo, etc. Some of them are highly optimized for speed
  • "data_manipulation" -
    • "conversion" -
      • "bit_cast_like" - similar to std::bit_cast from C++
      • "reinterpret_cast" - similar to reinterpret_cast from C++. You have a third-party object and you want to change its type (and behavior) in runtime.
    • "serialization" - automatically choose a fastest appropriate serializer for your type and structure of data (json, simplejson, ujson, ojson, msgpack, cbor, cbor2, marshal, pickle, cloudpickle, ...)
    • "tree_traversal" - both recrsive and nonrecursive tree traversal algorithms
  • "ctypes_tools" - ctypes code and structures used by Cengal.
    • "tools" - ctypes tools usefull for your code
  • "file_system" - normalized relative path, etc.
    • "app_fs_structure" - unified list of the default app directories (data, cache, temp, etc.) recommended by OS (Linux, Windows, Mac OS X) in a runtime for a given application name or a service name. Results are cached. Cache size can be modified in runtime.
  • "hardware" - hardware related
    • "info" - hardware info
      • "cpu" - normalized results from cpuinfo extended with an info from psutil.
  • "introspection" -
    • "inspect" - find out function parameters, entity owners list (method -> subclass -> class -> module), entitie's own properties (excluding parent's properties), etc.
    • "third_party" -
      • "ctypes" - provice an instance of ctypes Structure and take a dict with all internals of this structure. Good for inspecting/logging/printing values of a given structure with all values of all its substructures.
  • "io" -
    • "used_ports" - database of known TCP/UDP ports. Updates from an appropriate Wikipedia page once per Cengal release but you can update if for your self anytime if you want to.
    • "serve_free_ports" - provide ports range with an interested port types set and receive number of the first open appropriate port on your machine within given port range.
    • "named_connections_manager" - base for the "remote_nodes" (see above) and similar entities
    • "net_io" - an experimental networking library with an expandable architecture. Has implemented modules for epoll and select.
  • "math" -
    • "algebra" -
      • "fast_algorithms" - Fast inverse square root (the one from Quake III) implemented efficiently
    • "geometry" -
      • "ellipse" - ellipse related. Also several algorithms for precisely or efficiently compute an ellipse perimeter
      • "point" - numpy (if awailable) or python implementation of points (1D, 2D, 3D, nD)
      • "vector" - numpy (if awailable) or python algotithms on vectors (1D, 2D, 3D, nD). Implements CoordinateVectorNd, VectorNd, DirectedGraphNd
  • "modules_management" - reload module, import drop-in-replacement module if an original is not awailable
  • "statistics" -
    • "normal_distribution" - compute the normal distribution of your data. Booth count or use a formula. 99, 95, 68; standard_deviation: diff_mean, sqrt(variance), max_deviation, min_deviation.
  • "text_processing" - text parsing, patching, detect BOM and encoding
  • "time_management" -
    • "timer" - timer for any synchronous code
    • "sleep_tools" - sleep for a production code. Using usual sleep you may get not wat you want if you are not really into your target OS internals (Windows/Linux)
    • "repeat_for_a_time" - measures code/function executions per second. But it smart and eficiently repeats target code/function not N times but up to a T seconds. Results to a high precision measurements for even smallest and fastest pieces of code.
    • "relative_time" - time related module for a business purposes (calendars, payments, etc.)
  • "unittest" -
    • "patcher" - set of context manager for monkey patching builtins or other entities
  • "user_interface" -
    • "gui" -
      • "nt" -
        • "blur_behind" - Turn on Aero Glass backgrownd in Winndows 7, 10, 11 using documented or undocumented API (which one is awailable)
        • "dpi_awareness" - Turn on DPI awareness
  • "web_tools" -
    • "detect_browsers_host_device_type" -
      • "by_http_user_agent" - detects is it mobile or tablet device by analizing its http user_agent string

Size of the Cengal library

At the moment of 11 Oct 2023:

More than 190 modules

-------------------------------------------------------------------------------
Language                     files          blank        comment           code
-------------------------------------------------------------------------------
Python                         636          18572          21458          59787
Cython                           9            686            415           1817
C                                2             39             26            163
C/C++ Header                     2             14             26             37
-------------------------------------------------------------------------------
SUM:                           649          19311          21925          61804
-------------------------------------------------------------------------------

Counted with cloc util.

Examples

  • Can be found in examples dir
  • Each module has a development folder. Examples are usually placed there
  • Some of old examples can be fined inside the tests dir.

Cengal.coroutines examples

Text processing example

Ensures and updates copyright (with dates) in each Cengal's source file

Build

pip install cengal on Mac OS X

or

pip install git+https://github.com/FI-Mihej/Cengal.git on any system

Installation process requires compilation (prebuild Wheels are not prepared yet). So ensure that:

  • GCC/Clang is installed in your Linux/WSL (sudo apt-get --yes install build-essential for Ubuntu. And ./before_install_on_wsl.sh for Ubuntu under WSL for UI like Tkinter or Qt if you are using some kind of XServer on your host Windows)
  • At least Visual Studio Community - Build Tools are installed on your Windows and you are installing Cengal from within its Developer Command Prompt for an appropriate target CPU architecture (x64 Native Tools Command Prompt for VS 2022 for example). Make sure that you have compatible version of Visual Studio for your target CPython interpreter (see python -VV command output. For example Python 3.9.11 (tags/v3.9.11:2de452f, Mar 16 2022, 14:33:45) [MSC v.1929 64 bit (AMD64)]: this python interpreter requires Visual Studio 2019 version 16.11.2+ according to 1929 word search in Wikipedia page)

Projects using Cengal

  • flet_async - wrapper which makes Flet async and brings booth Cengal.coroutines and asyncio to Flet (Flutter based UI)
  • justpy_containers - wrapper around JustPy in order to bring more security and more production-needed features to JustPy (VueJS based UI)
  • Bensbach - decompiler from Unreal Engine 3 bytecode to a Lisp-like script and compiler back to Unreal Engine 3 bytecode. Made for a game modding purposes
  • Realistic-Damage-Model-mod-for-Long-War - Mod for both the original XCOM:EW and the mod Long War. Was made with a Bensbach, which was made with Cengal
  • SmartCATaloguer.com - TagDB based catalog of images (tags), music albums (genre tags) and apps (categories)

License

Copyright © 2012-2024 ButenkoMS. All rights reserved.

Licensed under the Apache License, Version 2.0.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cengal-4.0.1.tar.gz (26.1 kB view details)

Uploaded Source

Built Distributions

cengal-4.0.1-py3-none-any.whl (16.3 kB view details)

Uploaded Python 3

cengal-4.0.1-pp310-pypy310_pp73-win_amd64.whl (15.8 kB view details)

Uploaded PyPy Windows x86-64

cengal-4.0.1-pp39-pypy39_pp73-win_amd64.whl (15.8 kB view details)

Uploaded PyPy Windows x86-64

cengal-4.0.1-cp312-cp312-win_amd64.whl (15.8 kB view details)

Uploaded CPython 3.12 Windows x86-64

cengal-4.0.1-cp311-cp311-win_amd64.whl (15.8 kB view details)

Uploaded CPython 3.11 Windows x86-64

cengal-4.0.1-cp310-cp310-win_amd64.whl (15.8 kB view details)

Uploaded CPython 3.10 Windows x86-64

cengal-4.0.1-cp39-cp39-win_amd64.whl (15.8 kB view details)

Uploaded CPython 3.9 Windows x86-64

cengal-4.0.1-cp38-cp38-win_amd64.whl (15.8 kB view details)

Uploaded CPython 3.8 Windows x86-64

File details

Details for the file cengal-4.0.1.tar.gz.

File metadata

  • Download URL: cengal-4.0.1.tar.gz
  • Upload date:
  • Size: 26.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for cengal-4.0.1.tar.gz
Algorithm Hash digest
SHA256 c74ff730805c2f74784915b80ec8b3bdb5ec1d233084d61484f574aac5924c34
MD5 77777a4f92630fc28b52d6ffcbb75213
BLAKE2b-256 8cc936fbf62e24f37319498964832a515b4da005f6e23c715ad7e9330d2e7a52

See more details on using hashes here.

File details

Details for the file cengal-4.0.1-py3-none-any.whl.

File metadata

  • Download URL: cengal-4.0.1-py3-none-any.whl
  • Upload date:
  • Size: 16.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for cengal-4.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 3243d9be346b5f721a00237eae6d6c2c6d645d7b6be3513e13665e10ef6f0e17
MD5 235027024f9b5e9a86455f302314fe56
BLAKE2b-256 c754e40cca59d7a67024becc4f7f0e91ffa6ee7969b155315939e911cc73573c

See more details on using hashes here.

File details

Details for the file cengal-4.0.1-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for cengal-4.0.1-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 28195821df45ea863ce291d86a2052e0bb08478e99514359dc198990cf471717
MD5 517b103882925ba4aaaa628e0a72bdb1
BLAKE2b-256 9c2b576f8a1fc673f62666f729a4ba3bcac495a77e834409ee0ec68b6d1ad409

See more details on using hashes here.

File details

Details for the file cengal-4.0.1-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for cengal-4.0.1-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 ac562df9c962c20c26083a080ba883d38c48ed59711b19f19b883c1a4624ceb7
MD5 a0492d755385f7ced86c58960ac590de
BLAKE2b-256 e8c0d5a52bc2c399b406097f38279b6ed3ba8dfc150928c677fd9086b70ba54e

See more details on using hashes here.

File details

Details for the file cengal-4.0.1-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: cengal-4.0.1-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 15.8 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for cengal-4.0.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 90bc65f00ddebd4b443c165505e50b2f99dbed3979c928f4e99b764b1beee1f6
MD5 7b2ec4015b05aa85b596724e19ae0b21
BLAKE2b-256 1efd5795db711ada7ed6ee79307257858104e0b8d02bba70c11050596177c55d

See more details on using hashes here.

File details

Details for the file cengal-4.0.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: cengal-4.0.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 15.8 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for cengal-4.0.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 b252950c15a16b568debae9cd78f64e57b72dbf74448e4158ce06014799744e6
MD5 4ade26cd684eb737302698a0290c5a3c
BLAKE2b-256 28bf3b88e15a6b9c07cf74697b82bd76796208581320bd63a715fddefe212b9d

See more details on using hashes here.

File details

Details for the file cengal-4.0.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: cengal-4.0.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 15.8 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for cengal-4.0.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 497b8a481a67fe9469ece1aef0f6f145311a993cf50258d581402a44db761772
MD5 f1fdfddb69a7e24d1cac9199268d4240
BLAKE2b-256 716f05e62f63831c5c2daa1cdee4ae85d74236cd6b48a687aba8774e1d5f6382

See more details on using hashes here.

File details

Details for the file cengal-4.0.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: cengal-4.0.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 15.8 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for cengal-4.0.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 a0e2ad4c1180dc82eec12c5a4cbba4f3de0a2fe92f186579b78194f63e2a7bed
MD5 87c01567ee7b23a43525edb4b5527732
BLAKE2b-256 5604fee227ae14c715d1e43b0ea9fbc89660942fc8cb6e2b9398771845e72441

See more details on using hashes here.

File details

Details for the file cengal-4.0.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: cengal-4.0.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 15.8 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for cengal-4.0.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 087663c5ba5be69d505cfdf83b627244e18e941f4da34abffe70d7c412620c72
MD5 e36e00e9b8b4540386bc80c1c5592ca6
BLAKE2b-256 3d913c7d50d135a39bea789a6595f60a0b77b2e18469a1e8152a9ced57f066aa

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page