Skip to main content

Census data for arbitrary geographies

Project description

This library extends the Sunlight Foundation’s Census API Wrapper to allow querying Census tracts, block groups, and blocks by Census place, as well as by arbitrary geographies.


from census_area import Census

c = Census("MY_API_KEY")
old_homes = c.acs5.state_place_tract(('NAME', 'B25034_010E'), 17, 14000)

The call above will return the name of the census tract and the number of homes that were built before 1939 for every tract in the City of Chicago. 17 is the FIPS code for Illinois and 14000 is the FIPS code for Chicago.

By default, this method will return a list of dictionaries, where each dictionary represents the data for one tract.

With the keep_geometry argument, you can have the method return a geojson-like dictionary. Each tract is a feature, and the census variables about the tract appear in the feature’s property attributes.

old_homes_geojson = c.acs5.state_place_tract(('NAME', 'B25034_010E'), 17, 14000), keep_geometry=True)

There are similar methods for block groups

old_home_block_groups = c.acs5.state_place_blockgroup(('NAME', 'B25034_010E'), 17, 14000))

And blocks. Not that block level geographies are only available for the short-form data from the Decennial Census

owner_occupied = c.sf1.state_place_block(('NAME', 'H016F0002'), 17, 14000)

The tract and blockgroup methods are also available for the Decennial Census.

owner_occupied_blockgroup = c.sf1.state_place_tract(('NAME', 'H016F0002'), 17, 14000)
owner_occupied_tract = c.sf1.state_place_blockgroup(('NAME', 'H016F0002'), 17, 14000)

old_homes = c.sf3.state_place_tract('NAME', 'H034010'), 17, 14000)
old_homes = c.sf3.state_place_blockgroup('NAME', 'H034010'), 17, 14000)

In addition to these convenient methods, there are three lower level ways to get census tracts, blocks, and groups for arbitrary geometries.

import json

my_shape_geojson = json.load('my_shape.geojson')
features = []
old_homes = c.acs5.geo_tract(('NAME', 'B25034_010E'), my_shape_geojson['geometry'])
for tract_geojson, tract_data in old_homes:

my_shape_with_new_data_geojson = {'type': "FeatureCollection", 'features': features}

The method takes in the census variables you want and a geojson geometry, and returns a generator of the tract shapes, as geojson features, and the variables for that tract. You have to figure out what to do with it. In the example above, we make a new geojson object.

Similar methods are provided for block groups and blocks, for the ACS 5-year and Decennial Census.

c.acs5.geo_blockgroup(('NAME', 'B25034_010E'), my_shape_geojson['geometry'])

c.sf1.geo_block(('NAME', 'H016F0002'), my_shape_geojson['geometry'])
c.sf1.geo_blockgroup(('NAME', 'H016F0002'), my_shape_geojson['geometry'])
c.sf1.geo_tract(('NAME', 'H016F0002'), my_shape_geojson['geometry'])

c.sf3.state_place_tract('NAME', 'H034010'), my_shape_geojson['geometry'])
c.sf3.state_place_blockgroup('NAME', 'H034010'), my_shape_geojson['geometry'])

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for census-area, version 0.1
Filename, size File type Python version Upload date Hashes
Filename, size census_area-0.1-py2.py3-none-any.whl (4.6 kB) File type Wheel Python version 2.7 Upload date Hashes View
Filename, size census_area-0.1.tar.gz (4.2 kB) File type Source Python version None Upload date Hashes View

Supported by

Pingdom Pingdom Monitoring Google Google Object Storage and Download Analytics Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page