Project has been completed.
Project description
How to setup airflow
Set airflow directory
export AIRFLOW_HOME="/home/avnish/census_consumer_project/census_consumer_complaint/airflow"
To install airflow
pip install apache-airflow
To configure databse
airflow db init
To create login user for airflow
airflow users create -e avnish@ineuron.ai -f Avnish -l Yadav -p admin -r Admin -u admin
To start scheduler
airflow scheduler
To launch airflow server
airflow webserver -p <port_number>
pip install pandas-tfrecords
pip install \
--upgrade --ignore-installed \
python-snappy==0.5.1 \
--global-option=build_ext \
--global-option="-I/usr/local/include" \
--global-option="-L/usr/local/lib"
pip install twine python setup.py sdist bdist_wheel twine upload --repository-url https://test.pypi.org/legacy/ dist/* twine upload dist/*
To deploy your model
pip install tensorflow-serving-api
to inspect model
saved_model_cli show --dir <dir_path>
Above command will return tag set
saved_model_cli show --dir <dir_path> --tag_set <tag_name>
Above command will show available model signatures
Next: with tag_set and signature_def info, we can inspect model input and output
saved_model_cli show --dir <dir_path> --tag_set <tag_name> --signature_def <SignatureDef Key>
To inspect all signature without tag_set and signature_def saved_model_cli show --dir <dir_path> --all
Testing the model
Test model prediction using saved_model_cli with sample input data
--input_examples: input data formatted as a tf.Example data structure
other param
--outdir: by default output will be written in terminal
--overwrite: to write into a file
tf_debug: run in debug mode
To expose your model as an API using docker image tensorflow/serving
docker pull tensorflow/serving
Single model configuration
sudo docker run -p 8500:8500 \
-p 8501:8501\
--volumn <model_dir>:<target_dir>\
-e MODEL_NAME=<model_name>\
-e model_base_path=<target_dir>\
-t tensorflow/serving:latest
sudo docker run -p 8500:8500 -p 8501:8501 \
-v /home/avnish/census_consumer_project/census_consumer_complaint/census_consumer_complaint_data/saved_models:/avnish/my_model \
-e MODEL_NAME=my_model \
-e MODEL_BASE_PATH=/avnish \
-t tensorflow/serving:latest
To inspect docker container directory
docker exec -it <conatiner_name> bash
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file census-consumer-complaint-0.1.0.tar.gz
.
File metadata
- Download URL: census-consumer-complaint-0.1.0.tar.gz
- Upload date:
- Size: 17.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f6c7f369709911f7df7924dfaae1a3f5204ec1b322b413abb0408223b67bbcd7 |
|
MD5 | be1a830b03852196696b05c8e823b7fe |
|
BLAKE2b-256 | 50ea04f4087ee590fb8a932b0a7cb624c5d2146deec235f2bc0c6acd535b53a5 |
File details
Details for the file census_consumer_complaint-0.1.0-py3-none-any.whl
.
File metadata
- Download URL: census_consumer_complaint-0.1.0-py3-none-any.whl
- Upload date:
- Size: 30.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 11d8d5e80d0f15b4463efece6af1ca78a12527afe03d8ee6b8be7658bc206a80 |
|
MD5 | 8b127e56d21dd595c8f1eaee4675097d |
|
BLAKE2b-256 | 3b1edc72e6154ea750ca459b79751b70b41e077fa087de936acb3a10df4d1c3a |