Skip to main content

Implementation of the connectome embedding workflow.

Project description

cepy

Implementation of the connectome embedding (CE) framework.

Embedding of brain graph or connectome embedding (CE) involves finding a compact vectorized representation of nodes that captures their higher-order topological attributes. CE are obtained using the node2vec algorithm fitted on random walk on a brain graph. The current framework includes a novel approach to align separately learned embeddings to the same latent space.

Installation

pip install cepy

Usage

import cepy as ce
import numpy as np

# Load an adjacency matrix (structural connectivity matrix)
sc_group = ce.get_example('sc_group_matrix')

# Initiate and fit the connectome embedding model
ce_group = ce.CE(permutations = 1, seed=1)  
ce_group.fit(sc_group)

# Extract the cosine similarity matrix among pairwise nodes
cosine_sim = ce_group.similarity()

# Save and load the model
ce_group.save_model('group_ce.pkl') 
ce_loaded = ce.load_model('group_ce.pkl') # load it

# Load two existing CE models  
ce_subject1 = ce.get_example('ce_subject1')
ce_subject2 = ce.get_example('ce_subject2')

# Align the two to the space of the [ce]:
ce_subject1_aligned = ce.align(ce_group, ce_subject1)
ce_subject2_aligned = ce.align(ce_group, ce_subject2)

# Extract the node vectorized representations (normalized) for subsequent use (prediction, for example) 
w_sbject1 = ce_subject1_aligned.weights.get_w_mean(norm = True)
w_sbject2 = ce_subject2_aligned.weights.get_w_mean(norm = True)

Citing

If you find cepy useful for your research, please consider citing the following paper:

Levakov, G., Faskowitz, J., Avidan, G. & Sporns, O. (2020). Mapping structure to function
 and behavior with individual-level connectome embedding. In preparation

Reference

  • The node2vec implementation is modeified from the node2vec package by Elior Cohen and the connectome_embedding code by Gideon Rosenthal.
  • Rosenthal, G., Váša, F., Griffa, A., Hagmann, P., Amico, E., Goñi, J., ... & Sporns, O. (2018). Mapping higher-order relations between brain structure and function with embedded vector representations of connectomes. Nature communications, 9(1), 1-12. ;

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cepy-0.0.5.tar.gz (24.6 MB view details)

Uploaded Source

Built Distribution

cepy-0.0.5-py3-none-any.whl (24.6 MB view details)

Uploaded Python 3

File details

Details for the file cepy-0.0.5.tar.gz.

File metadata

  • Download URL: cepy-0.0.5.tar.gz
  • Upload date:
  • Size: 24.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.55.0 CPython/3.7.9

File hashes

Hashes for cepy-0.0.5.tar.gz
Algorithm Hash digest
SHA256 e6f3fd021dae782a023abb98613e9e3a93eb6f78fcfa179141072ee66f898219
MD5 a82fb0383b9ef1618116061cac5c4ac8
BLAKE2b-256 a55a5161cd6810e8bb909b263ae4c0132bc8d224f0cafffac8d1707ae192267b

See more details on using hashes here.

File details

Details for the file cepy-0.0.5-py3-none-any.whl.

File metadata

  • Download URL: cepy-0.0.5-py3-none-any.whl
  • Upload date:
  • Size: 24.6 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0 requests-toolbelt/0.9.1 tqdm/4.55.0 CPython/3.7.9

File hashes

Hashes for cepy-0.0.5-py3-none-any.whl
Algorithm Hash digest
SHA256 af113595715a5d6ceb899add96b73ff0175f3459c90402322266b101895c1feb
MD5 af46c4fc0caecd99c8268c608d315536
BLAKE2b-256 b7cd7e42a64b83195e72db7cf003679a4fae928e88ec15207a9c77488c76b6c9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page