SQLAlchemy adapter for generating queries with Cerbos: an open core, language-agnostic, scalable authorization solution
Project description
Cerbos + SQLAlchemy Adapter
An adapter library that takes a Cerbos Query Plan (PlanResources API) response and converts it into a SQLAlchemy Select instance. This is designed to work alongside a project using the Cerbos Python SDK.
The following conditions are supported: and
, or
, not
, eq
, ne
, lt
, gt
, le
(lte
), ge
(gte
) and in
. Other operators (eg math operators) can be implemented programatically, and attached to the query object via the query.where(...)
API.
Requirements
- Cerbos > v0.16
- SQLAlchemy >= 1.4 / 2.0
Usage
pip install cerbos-sqlalchemy
from cerbos.sdk.client import CerbosClient
from cerbos.sdk.model import Principal, ResourceDesc
from cerbos_sqlalchemy import get_query
from sqlalchemy import Column, Integer, String
from sqlalchemy.orm import declarative_base
from sqlalchemy.sql import Select
Base = declarative_base()
class LeaveRequest(Base):
__tablename__ = "leave_request"
id = Column(Integer, primary_key=True)
department = Column(String(225))
geography = Column(String(225))
team = Column(String(225))
priority = Column(Integer)
with CerbosClient(host="http://localhost:3592") as c:
p = Principal(
"john",
roles={"employee"},
policy_version="20210210",
attr={"department": "marketing", "geography": "GB", "team": "design"},
)
# Get the query plan for "view" action
rd = ResourceDesc("leave_request", policy_version="20210210")
plan = c.plan_resources("view", p, rd)
# the attr_map arg of get_query expects a map[string, InstrumentedAttribute | Column], with cerbos attribute strings mapped to the column/attr instances
attr_map = {
"request.resource.attr.department": LeaveRequest.department, # LeaveRequest.__table__.c.department is also allowed
"request.resource.attr.geography": LeaveRequest.geography,
"request.resource.attr.team": LeaveRequest.team,
"request.resource.attr.priority": LeaveRequest.priority,
}
# `get_query` supports both `Table` instances and ORM entities:
# ORM entity - honouring object level relationships via the sqlalchemy ORM
query: Select = get_query(plan, LeaveRequest, attr_map)
# Alternatively it can generate legacy queries by passing the Table instance
query: Select = get_query(plan, LeaveRequest.__table__, attr_map)
# NOTE: if columns defined within the attr_map originate from more than one table, we need to define a mapping as the optional 4th positional arg to `get_query`.
# The argument is in the form:
# `list[tuple[Table | DeclarativeMeta, BinaryExpression | ColumnOperators]]`
# e.g.:
query: Select = get_query(
plan,
Table1,
{
"request.resource.attr.foo": Table1.foo, # or `Table1.__table__.c.foo`
"request.resource.attr.bar": Table2.bar,
"request.resource.attr.bosh": Table3.bosh,
},
[
(Table2, Table1.table2_id == Table2.id), # or (Table2.__table__, Table1.__table__.c.table2_id == Table2.__table__.c.id)
(Table3, Table1.table3_id == Table3.id),
]
)
# optionally extend the query
query = query.where(LeaveRequest.priority < 5)
# or return a subset of the selected columns (via a new `select`)
# NOTE: this is wise to do as standard, to avoid implicit joins generated by sqla `relationship()` usage, if present
query = query.with_only_columns(
LeaveRequest.department,
LeaveRequest.geography,
)
# Print the compiled query (for debug purposes)
print(query.compile(compile_kwargs={"literal_binds": True}))
Overriding default predicates
By default, the library provides a base set of operators which are widely supported across a range of SQL dialects. However, in some cases, users may wish to override a particular operator for a more idiomatic/optimised alternative for a given database. An example of this could be postgres users preferring to use = ANY
over IN
:
from sqlalchemy.sql.expression import any_
query = get_query(
plan_resource_resp,
some_table,
attr_map={
"request.resource.attr.foo": Table1.foo,
},
# override handler functions in the map below
operator_override_fns={
"in": lambda c, v: c == any_(v),
},
)
The types are as follows:
from sqlalchemy import Column
from sqlalchemy.orm import InstrumentedAttribute
from sqlalchemy.sql.expression import BinaryExpression, ColumnOperators
GenericColumn = Column | InstrumentedAttribute
GenericExpression = BinaryExpression | ColumnOperators
# and the actual map arg to `get_query` ⬇️
OperatorFnMap = dict[str, Callable[[GenericColumn, Any], GenericExpression]]
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file cerbos-sqlalchemy-0.3.2.tar.gz
.
File metadata
- Download URL: cerbos-sqlalchemy-0.3.2.tar.gz
- Upload date:
- Size: 9.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8335c76992acb064cc7e5305a56359935af83428a905e837e7128d732b57cb98 |
|
MD5 | bdb9f17b1a6b0b8da702f255dd3700e6 |
|
BLAKE2b-256 | 39db1e9c483cf21f344faa6a12edf40f9c29ee6dcb300442c771a0d62c19006a |
File details
Details for the file cerbos_sqlalchemy-0.3.2-py3-none-any.whl
.
File metadata
- Download URL: cerbos_sqlalchemy-0.3.2-py3-none-any.whl
- Upload date:
- Size: 5.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | bc6f3e083e8e8de9d0ef4cebe799f73398dfcae4c4048122d8ab0dab146a39ba |
|
MD5 | 205cf8cca14c60ea3f5fcde38b9f83b7 |
|
BLAKE2b-256 | 34e09945cac1022e63d57de5757ed05730cb75bbd12b2428d4638935e58b2ee0 |