Skip to main content

Cereja is a bundle of useful functions that I don't want to rewrite.

Project description

Cereja 🍒

Python package PyPI version Downloads MIT LICENSE Issues Get start on Colab

CEREJA

Cereja is a bundle of useful functions that I don't want to rewrite.

How many times have you needed to rewrite that function or base class? Well, I thought then of joining all my lines of code, bit by bit, in one place.

Not well structured yet :( ... But you can help me !!!

Getting Started DEV

Don't be shy \0/ ... Clone the repository and submit a function or module you made or use some function you liked.

See CONTRIBUTING 💻

Setup

Installing

Install Cereja Package

python3 -m pip install --user cereja

or for all users

python3 -m pip install cereja

Note: If you're using Windows, you don't need use python3, but make sure your python path settings are correct.

Cereja Example usage

See some of the Cereja tools

Filetools

Filetools has several functions, have the converters for end of line (CRLF, LF and CR), you can convert CRLF to LF or CR, or contrariwise.

Txt File Manipulation Example - most files
import cereja as cj

data = ['first line', 'second line', 'third line']
file = cj.File('test.txt', data) # ram only, not yet saved
print(file) # FileBase<test.txt>
print(file.data) # ['first line', 'second line', 'third line']

# iterable
for line in file:
    pass

# indexable
file[0] # 'first line'
file[:3] # ['first line', 'second line', 'third line']

# Insert Data
file.insert('other line')
file.insert('other line2')
print(file.data) # ['other line2', 'other line', 'first line', 'second line', 'third line']
# it is allowed to use index assignment
file[0] = 'other line'
# can use file.append
file.append('end line')

# Data Recovery
file.undo() # You selected amendment 3
print(file.data) # ['other line2', 'other line', 'first line', 'second line', 'third line']
file.redo() # You selected amendment 4
print(file.data) # ['other line', 'other line2', 'other line', 'first line', 'second line', 'third line']

# Save Data
file.save()
File Manipulation Example - .json
import cereja as cj

data = {'key': 'value', 'key2': 'value2', 'key3': 'value3'}
file = cj.File('test.json', data) # ram only, not yet saved
print(file) # JsonFile<test.json>
print(file.data) # {'key': 'value', 'key2': 'value2', 'key3': 'value3'}

# Iterable
for key, value in file.items(): # only .json data, use .items(), .values() and .keys()
    pass

file['key'] # 'value'

# Insert Data
file['key4'] = 'value4'
print(file.data) # {'key': 'value', 'key2': 'value2', 'key3': 'value3', 'key4': 'value4'}

# Data Recovery
file.undo() # You selected amendment 1
print(file.data) # {'key': 'value', 'key2': 'value2', 'key3': 'value3'}
file.redo() # You selected amendment 2
print(file.data) # {'key': 'value', 'key2': 'value2', 'key3': 'value3', 'key4': 'value4'}

# Save Data
file.save()
File Manipulation Example - .csv File
import cereja.file.core
import cereja as cj

file = cj.File('test.csv', fieldnames=['col1','col2','col3']) # ram only, not yet saved
print(file) # CsvFile<test.csv>
file.add_row([1,2,3])
print(file.lines) # [[1, 2, 3]]
file.add_row([1,2], fill_with=0)
print(file.lines) # [[1, 2, 3], [1, 2, 0]]

# convert to dict
file.to_dict() # {'col1': [1, 1], 'col2': [2, 2], 'col3': [3, 0]}

# or get generation row by row with col
print(list(file.data)) # [{'col1': 1, 'col2': 2, 'col3': 3}, {'col1': 1, 'col2': 2, 'col3': 0}]

# Iterable
for row in file:
    pass

# indexing col values
print(file['col1']) # [1, 1]
# or use index and get a row
print(file[0]) # [1, 2, 3]

# Save Data
file.save()

# Reading
file = cereja.file.core.CsvFile.load('test.csv') # have a fun! lol
dir(file) # see all methods and attr
Reading Other Files
import cereja.file.core
import cereja as cj

file = cereja.file.core.File.load('path_to_file.ext')
# now you have a file instance, have fun!
# you can insert lines, remove and save \0/
file.save(exist_ok=True) # or change path file.save(on_new_path='new_path.ext', exist_ok=True)
Convert between CRLF, LF and CR
python3 -m pip install cereja

python3 -m cereja --crlf_to_lf "/dir_or_file_path"

Corpus

Great training and test separator.

Create from list data
import cereja as cj

X = ['how are you?', 'my name is Joab', 'I like coffee', 'how are you joab?', 'how', 'we are the world']
Y = ['como você está?', 'meu nome é Joab', 'Eu gosto de café', 'Como você está joab?', 'como', 'Nós somos o mundo']

corpus = cj.Corpus(source_data=X, target_data=Y, source_name='en', target_name='pt')
print(corpus) # Corpus(examples: 6 - source_vocab_size: 13 - target_vocab_size:15)
print(corpus.source) # LanguageData(examples: 6 - vocab_size: 13)
print(corpus.target) # LanguageData(examples: 6 - vocab_size: 15)

corpus.source.phrases_freq
# Counter({'how are you': 1, 'my name is joab': 1, 'i like coffee': 1, 'how are you joab': 1, 'how': 1, 'we are the world': 1})

corpus.source.word_freq
# Counter({'how': 3, 'are': 3, 'you': 2, 'joab': 2, 'my': 1, 'name': 1, 'is': 1, 'i': 1, 'like': 1, 'coffee': 1, 'we': 1, 'the': 1, 'world': 1})

corpus.target.phrases_freq
# Counter({'como você está': 1, 'meu nome é joab': 1, 'eu gosto de café': 1, 'como você está joab': 1, 'como': 1, 'nós somos o mundo': 1})

corpus.target.words_freq
# Counter({'como': 3, 'você': 2, 'está': 2, 'joab': 2, 'meu': 1, 'nome': 1, 'é': 1, 'eu': 1, 'gosto': 1, 'de': 1, 'café': 1, 'nós': 1, 'somos': 1, 'o': 1, 'mundo': 1})

# split_data function guarantees test data without data identical to training
# and only with vocabulary that exists in training
train, test = corpus.split_data() # default percent of training is 80%
Read from .csv
import cereja as cj

corpus = cj.Corpus.load_corpus_from_csv('path_to_file.csv', src_col_name='x_data', trg_col_name='y_data', source_name='en', target_name='pt')
# now you have a Corpus instance, have fun! (:

Progress

import cereja as cj
import time

def process_data(i: int):
    # simulates some processing 
    time.sleep(cj.rand_n()/max(abs(i), 1))

my_iterable = range(1, 500)
my_progress = cj.Progress("My Progress")

for i in my_progress(my_iterable):
    process_data(i)
Custom Display
import cereja as cj
import time

progress = cj.Progress("My Progress")
print(progress)

print(progress[0])
print(progress[1])
print(progress[2])

class MyCustomState(cj.StateBase):
    def display(self, current_value, max_value, *args, **kwargs):
        return f'{current_value} -> {max_value}'
    def done(self, *args, **kwargs):
        return f'FINISHED'

progress[0] = MyCustomState

for i in progress(range(1, 500)):
    time.sleep(1/i)
With Statement
import cereja as cj
import time

with cj.Progress("My Progress") as prog:
    time.sleep(5)
    for i in prog(range(1, 500)):
        time.sleep(1/i)

Utils

import cereja.mathtools
import cereja as cj

# Arraytools
data = [[1,2,3],[3,3,3]]
cj.is_iterable(data) # True
cj.is_sequence(data) # True
cj.is_numeric_sequence(data) # True
cj.is_empty(data) # False
cj.get_shape(data) # (2, 3)

data = cj.flatten(data) # [1, 2, 3, 3, 3, 3]
cereja.mathtools.prod(data) # 162
cereja.mathtools.sub(data) # -13
cereja.mathtools.div(data) # 0.006172839506172839

cj.rand_n(0.0, 2.0, n=3) # [0.3001196087729699, 0.639679494102923, 1.060200897124107]
cj.rand_n(1,10) # 5.086403830031244
cj.array_randn((3, 3, 3)) # [[[0.015077210355770374, 0.014298110484612511, 0.030410666810216064], [0.029319083335697604, 0.0072365209507707666, 0.010677361074992], [0.010576754075922935, 0.04146379877648334, 0.02188348813336284]], [[0.0451851551098092, 0.037074906805326824, 0.0032484586475421007], [0.025633380630695347, 0.010312669541918484, 0.0373624007621097], [0.047923908102496145, 0.0027939333359724224, 0.05976224377251878]], [[0.046869510719106486, 0.008325638358172866, 0.0038702998343255893], [0.06475268683502387, 0.0035638592537234623, 0.06551037943638163], [0.043317416824708604, 0.06579372884523939, 0.2477564291871006]]]
cj.group_items_in_batches(items=[1,2,3,4], items_per_batch=3, fill=0) # [[1, 2, 3], [4, 0, 0]]
cj.remove_duplicate_items(['hi', 'hi', 'ih']) # ['hi', 'ih'] 
cj.get_cols([['line1_col1','line1_col2'],['line2_col1','line2_col2']]) # [['line1_col1', 'line2_col1'], ['line1_col2', 'line2_col2']]
cereja.mathtools.dotproduct([1,2], [1,2]) # 5


a = cj.array_gen((3,3), 1) # [[1, 1, 1], [1, 1, 1], [1, 1, 1]]
b = cj.array_gen((3,3), 1) # [[1, 1, 1], [1, 1, 1], [1, 1, 1]]
cereja.mathtools.dot(a, b) # [[3, 3, 3], [3, 3, 3], [3, 3, 3]]
cereja.mathtools.theta_angle((2,2), (0, -2)) # 135.0

See Usage - Jupyter Notebook

License

This project is licensed under the MIT License - see the LICENSE file for details

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cereja-1.3.0b0.tar.gz (63.5 kB view details)

Uploaded Source

Built Distribution

cereja-1.3.0b0-py3-none-any.whl (89.0 kB view details)

Uploaded Python 3

File details

Details for the file cereja-1.3.0b0.tar.gz.

File metadata

  • Download URL: cereja-1.3.0b0.tar.gz
  • Upload date:
  • Size: 63.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for cereja-1.3.0b0.tar.gz
Algorithm Hash digest
SHA256 33a4a0e6e6a6f5745920669b74714e195fb1b6e44dad8223aafa1292f11e701d
MD5 eb536065bd164d2150be046c43215172
BLAKE2b-256 cb1a3e0616546bb0b72914cd19bd2909767db4904d641d45f4d364baeedc7014

See more details on using hashes here.

File details

Details for the file cereja-1.3.0b0-py3-none-any.whl.

File metadata

  • Download URL: cereja-1.3.0b0-py3-none-any.whl
  • Upload date:
  • Size: 89.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for cereja-1.3.0b0-py3-none-any.whl
Algorithm Hash digest
SHA256 0ffc54adcda15c0b9a12bdc48c7013f139746dc842078ce03d28cd81e091fcab
MD5 9ec09db8a7780d5bfb0d5b37bcf69579
BLAKE2b-256 5554ba89daf6cb64e02d83e782568d410c56640252443d283191c2e74aa81fb9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page