Skip to main content

Cereja is a bundle of useful functions that I don't want to rewrite.

Project description

Cereja 🍒

Python package PyPI version Downloads MIT LICENSE Issues Get start on Colab

CEREJA

Cereja is a bundle of useful functions that I don't want to rewrite.

How many times have you needed to rewrite that function or base class? Well, I thought then of joining all my lines of code, bit by bit, in one place.

Not well structured yet :( ... But you can help me !!!

Getting Started DEV

Don't be shy \0/ ... Clone the repository and submit a function or module you made or use some function you liked.

See CONTRIBUTING 💻

Setup

Installing

Install Cereja Package

python3 -m pip install --user cereja

or for all users

python3 -m pip install cereja

Note: If you're using Windows, you don't need use python3, but make sure your python path settings are correct.

Cereja Example usage

See some of the Cereja tools

Filetools

Have a fun

from cereja import FileIO
# load File
file = FileIO.load('test.json') # return FileIO.json object (has interface for .txt, .csv, .json and more)
print(dir(file))

Corpus

Great training and test separator.

Create from list data
import cereja as cj

X = ['how are you?', 'my name is Joab', 'I like coffee', 'how are you joab?', 'how', 'we are the world']
Y = ['como você está?', 'meu nome é Joab', 'Eu gosto de café', 'Como você está joab?', 'como', 'Nós somos o mundo']

corpus = cj.Corpus(source_data=X, target_data=Y, source_name='en', target_name='pt')
print(corpus) # Corpus(examples: 6 - source_vocab_size: 13 - target_vocab_size:15)
print(corpus.source) # LanguageData(examples: 6 - vocab_size: 13)
print(corpus.target) # LanguageData(examples: 6 - vocab_size: 15)

corpus.source.phrases_freq
# Counter({'how are you': 1, 'my name is joab': 1, 'i like coffee': 1, 'how are you joab': 1, 'how': 1, 'we are the world': 1})

corpus.source.word_freq
# Counter({'how': 3, 'are': 3, 'you': 2, 'joab': 2, 'my': 1, 'name': 1, 'is': 1, 'i': 1, 'like': 1, 'coffee': 1, 'we': 1, 'the': 1, 'world': 1})

corpus.target.phrases_freq
# Counter({'como você está': 1, 'meu nome é joab': 1, 'eu gosto de café': 1, 'como você está joab': 1, 'como': 1, 'nós somos o mundo': 1})

corpus.target.words_freq
# Counter({'como': 3, 'você': 2, 'está': 2, 'joab': 2, 'meu': 1, 'nome': 1, 'é': 1, 'eu': 1, 'gosto': 1, 'de': 1, 'café': 1, 'nós': 1, 'somos': 1, 'o': 1, 'mundo': 1})

# split_data function guarantees test data without data identical to training
# and only with vocabulary that exists in training
train, test = corpus.split_data() # default percent of training is 80%
Read from .csv
import cereja as cj

corpus = cj.Corpus.load_corpus_from_csv('path_to_file.csv', src_col_name='x_data', trg_col_name='y_data', source_name='en', target_name='pt')
# now you have a Corpus instance, have fun! (:

Progress

import cereja as cj
import time

def process_data(i: int):
    # simulates some processing 
    time.sleep(cj.rand_n()/max(abs(i), 1))

my_iterable = range(1, 500)
my_progress = cj.Progress("My Progress")

for i in my_progress(my_iterable):
    process_data(i)
Custom Display
import cereja as cj
import time

progress = cj.Progress("My Progress")
print(progress)

print(progress[0])
print(progress[1])
print(progress[2])

class MyCustomState(cj.StateBase):
    def display(self, current_value, max_value, *args, **kwargs):
        return f'{current_value} -> {max_value}'
    def done(self, *args, **kwargs):
        return f'FINISHED'

progress[0] = MyCustomState

for i in progress(range(1, 500)):
    time.sleep(1/i)
With Statement
import cereja as cj
import time

with cj.Progress("My Progress") as prog:
    time.sleep(5)
    for i in prog(range(1, 500)):
        time.sleep(1/i)

Utils

import cereja.mathtools
import cereja as cj

# Arraytools
data = [[1,2,3],[3,3,3]]
cj.is_iterable(data) # True
cj.is_sequence(data) # True
cj.is_numeric_sequence(data) # True
cj.is_empty(data) # False
cj.get_shape(data) # (2, 3)

data = cj.flatten(data) # [1, 2, 3, 3, 3, 3]
cereja.mathtools.prod(data) # 162
cereja.mathtools.sub(data) # -13
cereja.mathtools.div(data) # 0.006172839506172839

cj.rand_n(0.0, 2.0, n=3) # [0.3001196087729699, 0.639679494102923, 1.060200897124107]
cj.rand_n(1,10) # 5.086403830031244
cj.array_randn((3, 3, 3)) # [[[0.015077210355770374, 0.014298110484612511, 0.030410666810216064], [0.029319083335697604, 0.0072365209507707666, 0.010677361074992], [0.010576754075922935, 0.04146379877648334, 0.02188348813336284]], [[0.0451851551098092, 0.037074906805326824, 0.0032484586475421007], [0.025633380630695347, 0.010312669541918484, 0.0373624007621097], [0.047923908102496145, 0.0027939333359724224, 0.05976224377251878]], [[0.046869510719106486, 0.008325638358172866, 0.0038702998343255893], [0.06475268683502387, 0.0035638592537234623, 0.06551037943638163], [0.043317416824708604, 0.06579372884523939, 0.2477564291871006]]]
cj.group_items_in_batches(items=[1,2,3,4], items_per_batch=3, fill=0) # [[1, 2, 3], [4, 0, 0]]
cj.remove_duplicate_items(['hi', 'hi', 'ih']) # ['hi', 'ih'] 
cj.get_cols([['line1_col1','line1_col2'],['line2_col1','line2_col2']]) # [['line1_col1', 'line2_col1'], ['line1_col2', 'line2_col2']]
cereja.mathtools.dotproduct([1,2], [1,2]) # 5


a = cj.array_gen((3,3), 1) # [[1, 1, 1], [1, 1, 1], [1, 1, 1]]
b = cj.array_gen((3,3), 1) # [[1, 1, 1], [1, 1, 1], [1, 1, 1]]
cereja.mathtools.dot(a, b) # [[3, 3, 3], [3, 3, 3], [3, 3, 3]]
cereja.mathtools.theta_angle((2,2), (0, -2)) # 135.0

See Usage - Jupyter Notebook

License

This project is licensed under the MIT License - see the LICENSE file for details

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cereja-1.3.4.tar.gz (61.4 kB view details)

Uploaded Source

Built Distribution

cereja-1.3.4-py3-none-any.whl (88.6 kB view details)

Uploaded Python 3

File details

Details for the file cereja-1.3.4.tar.gz.

File metadata

  • Download URL: cereja-1.3.4.tar.gz
  • Upload date:
  • Size: 61.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.9.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for cereja-1.3.4.tar.gz
Algorithm Hash digest
SHA256 f99e4cc018c46154c52de489352d0fa3ff129bc89dccee9f936657d8005e0432
MD5 eb974afc6a91cd56b3cdeb170828b1a4
BLAKE2b-256 57cfccc7be66b2efb953a07298fa4ae608ab85ad3adb760a96def256d88288c6

See more details on using hashes here.

File details

Details for the file cereja-1.3.4-py3-none-any.whl.

File metadata

  • Download URL: cereja-1.3.4-py3-none-any.whl
  • Upload date:
  • Size: 88.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.9.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for cereja-1.3.4-py3-none-any.whl
Algorithm Hash digest
SHA256 3678c8dc9f935f178e05aa11c52f60b9290d6c86c03ab675514b1ac4e7670e56
MD5 cf78ba79ab9ac74d79970c9ff319b00e
BLAKE2b-256 2c67ba555e095556df39f37b326b8840d1a5114a0e5aee59e21ccd9f998cb877

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page