Code utilities for the CESPED (Cryo-EM Supervised Pose Estimation Dataset) benchmark
Project description
CESPED: Utilities for the Cryo-EM Supervised Pose Estimation Dataset
CESPED is a new dataset specifically designed for Supervised Pose Estimation in Cryo-EM. You can check our manuscript at https://arxiv.org/abs/2311.06194.
Installation
cesped has been tested on python 3.11. Installation should be automatic using pip
pip install cesped
#Or directy from the master branch
pip install git+https://github.com/rsanchezgarc/cesped
or cloning the repository
git clone https://github.com/rsanchezgarc/cesped
cd cesped
pip install .
Basic usage
ParticlesDataset class
It is used to load the images and poses.
- Get the list of downloadable entries
from cesped.particlesDataset import ParticlesDataset
listOfEntries = ParticlesDataset.getCESPEDEntries()
- Load a given entry
targetName, halfset = listOfEntries[0] #We will work with the first entry only
dataset = ParticlesDataset(targetName, halfset)
For a rapid test, use targetName="TEST"
and halfset=0
. If the dataset is not yet available in the benchmarkDir (defined in defaultDataConfig.yaml),
it will be automatically downloaded. Metadata (Euler angles, CTF,...) are stored using Relion starfile format, and images are stored as .mrcs stacks.
- Use it as a regular dataset
dl = DataLoader(dataset, batch_size=32)
for batch in dl:
iid, img, (rotMat, xyShiftAngs, confidence), metadata = batch
#iid is the list of ids of the particles (string)
#img is a batch of Bx1xNxN images
#rotMat is a batch of rotation matrices Bx3x3
#xyShiftAngs is a batch of image shifts in Angstroms Bx2
#confidence is a batch of numbers, between 0 and 1, Bx1
#metata is a dictionary of names:values for all the information about the particle
#YOUR PYTORCH CODE HERE
predRot = model(img)
loss = loss_function(predRot, rotMat)
loss.backward()
optimizer.step()
optimizer.zero_grad()
- Once your model is trained, you can update the metadata of the ParticlesDataset and save it so that it can be used in cryo-EM software
for iid, pred_rotmats, maxprob in predictions:
#iid is the list of ids of the particles (string)
#pred_rotmats is a batch of predicted rotation matrices Bx3x3
#maxprob is a batch of numbers, between 0 and 1, Bx1, that indicates the confidence in the prediction (e.g. softmax values)
particlesDataset.updateMd(ids=iid, angles=pred_rotmats,
shifts=torch.zeros(pred_rotmats.shape[0],2, device=pred_rotmats.device), #Or actual predictions if you have them
confidence=maxprob,
angles_format="rotmat")
particlesDataset.saveMd(outFname) #Save the metadata as an starfile, a common cryo-EM format
- Finally, evaluation can be computed if the predictions for the halfset 0 and halfset 1 were saved using the evaluateEntry script.
python -m cesped.evaluateEntry --predictionType SO3 --targetName 11120 \
--half0PredsFname particles_preds_0.star --half1PredsFname particles_preds_1.star \
--n_cpus 12 --outdir evaluation/
evaluateEntry uses Relion for reconstruction, so you will need to install it and edit the config file defaultRelionConfig.yaml or provide, via command line arguments, where Relion is installed
--mpirun /path/to/mpirun --relionBinDir /path/to/relion/bin
Alternatively, you can build a singularity image, using the definition file we provide relionSingularity.def
singularity build relionSingularity.sif relionSingularity.def
and edit the config file to point where the singularity image file is located, or use the command line argument
--singularityImgFile /path/to/relionSingularity.sif
Cross-plataform usage.
Users of other deep learning frameworks can download CESPED entries using the following command
python -m cesped.particlesDataset download_entry -t 10166 --halfset 0
This will download the associated starfile and mrcs file to the default benchmark directory (defined in defaultDataConfig.yaml.
Use --benchmarkDir
to specify another directory
In order to list the entries available for download and the ones already downloaded, you can use
python -m cesped.particlesDataset list_entries
Preprocessing of the dataset entries can be executed using
python -m cesped.particlesDataset preprocess_entry --t 10166 --halfset 0 --o /tmp/dumpedData/ --ctf_correction "phase_flip"
where --t
is the target name. Use -h
to display the list of available preprocessing operations.
The raw data can be easily accessed using the Python package starstack, which relies on the mrcfile and starfile packages. Predictions should be written as a star file with the newly predicted Euler angles.
Evaluation can be computed once the predictions for the half-set 0 and half-set 1 are saved
python -m cesped.evaluateEntry --predictionType SO3 --targetName 11120 \
--half0PredsFname particles_preds_0.star --half1PredsFname particles_preds_1.star \
--n_cpus 12 --outdir evaluation/
Image2Sphere experiments
The experiments have been implemented using lightning and lightingCLI. You can find the configuration files located at :
YOUR_DIR/cesped/configs/
You can also find it as:
import cesped
cesped.default_configs_dir
Train
In order to train the model on one target, you run
python -m cesped.trainEntry --data.halfset <HALFSET> --data.targetName <TARGETNAME> --trainer.default_root_dir <OUTDIR>
with <HALFSET>
0 or 1 and <TARGETNAME>
one of the list that can be found using ParticlesDataset.getCESPEDEntries()
The included targets are:
EMPIAR ID | Composition | Symmetry | Image Pixels | FSCR0.143 (Å) | Masked FSCR0.143 (Å) | # Particles |
---|---|---|---|---|---|---|
10166 | Human 26S proteasome bound to the chemotherapeutic Oprozomib | C1 | 284 | 5.0 | 3.9 | 238631 |
10786 | Substance P-Neurokinin Receptor G protein complexes (SP-NK1R-miniGs399) | C1 | 184 | 3.3 | 3.0* | 288659 |
10280 | Calcium-bound TMEM16F in nanodisc with supplement of PIP2 | C2 | 182 | 3.6 | 3.0* | 459504 |
11120 | M22 bound TSHR Gs 7TM G protein | C1 | 232 | 3.4 | 3.0* | 244973 |
10648 | PKM2 in complex with Compound 5 | D2 | 222 | 3.7 | 3.3 | 234956 |
10409 | Replicating SARS-CoV-2 polymerase (Map 1) | C1 | 240 | 3.3 | 3.0* | 406001 |
10374 | Human ABCG2 transporter with inhibitor MZ29 and 5D3-Fab | C2 | 216 | 3.7 | 3.0* | 323681 |
*
Nyquist Frequency at 1.5 Å/pixel; Resolution is estimated at the usual threshold 0.143.
Reported FSCR0.143 values were obtained directly from the relion_refine logs while Masked FSCR0.143 values were collected from the relion_postprocess logs.
In addition, the entry TEST is a small subset of EMPIAR-11120
Do not forget to change the configuration files or to provide different values via the command line or environmental
variables. In addition, [--config CONFIG_NAME.yaml]
also allows overwriting the default values using (a/several) custom
yaml file(s). Use -h
to see the list of configurable parameters. Some of the most important ones are.
- trainer.default_root_dir. Directory where the checkpoints and the logs will be saved, from defaultTrainerConfig.yaml
- optimizer.lr. The learning rate, from defaultOptimizerConfig.yaml
- data.benchmarkDir. Directory where the benchmark entries are saved, from defaultDataConfig.yaml. It is recommended to change this in the config file.
- data.num_data_workers. Number of workers for data loading, from defaultDataConfig.yaml
- data.batch_size. from defaultDataConfig.yaml
Inference
By default, when using python -m cesped.trainEntry
, inference on the complementary halfset is done on a single GPU
after training finishes, and the starfile with the predictions can be found at
<OUTDIR>/lightning_logs/version_<\d>/predictions_[0,1].star
. In order to manually run the pose prediction
code (and to make use of all GPUs) you can run
python -m cesped.inferEntry --data.halfset <HALFSET> --data.targetName <TARGETNAME> --ckpt_path <PATH_TO_CHECKPOINT> \
--outFname /path/to/output/starfile.star
Evaluation
- As before, evaluation can be computed if the predictions for the halfset 0 and halfset 1 were saved using the evaluateEntry script.
python -m cesped.evaluateEntry --predictionType SO3 --targetName 11120 \
--half0PredsFname particles_preds_0.star --half1PredsFname particles_preds_1.star \
--n_cpus 12 --outdir evaluation/
API
For API documentation check the docs folder
Relion Singularity
A singularity container for relion_reconstruct with MPI support can be built with the following command.
singularity build relionSingulary.sif relionSingulary.def
Then, Relion reconstruction can be computed with the following command:
singularity exec relionSingulary.sif mpirun -np 4 relion_reconstruct_mpi --ctf --pad 2 --i input_particles.star --o output_map.mrc
#Or the following command
./relionSingulary.sif 4 --ctf --pad 2 --i input_particles.star --o output_map.mrc #This uses 4 mpis
However, typical users will not need to execute the container manually. Everything happens transparently within the evaluateEntry.py script
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file cesped-24.7.0.tar.gz
.
File metadata
- Download URL: cesped-24.7.0.tar.gz
- Upload date:
- Size: 57.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b20648c11dd957b722d756b295ab29998e7f8393143b2922094000047fee827f |
|
MD5 | 41e106fead53dc0c966932320a7521da |
|
BLAKE2b-256 | 48d45eb7e847a2dcb595d8621218d646da486eaa6682ff205749d39103702159 |
File details
Details for the file cesped-24.7.0-py3-none-any.whl
.
File metadata
- Download URL: cesped-24.7.0-py3-none-any.whl
- Upload date:
- Size: 64.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ad34e5a1e631575cd23fcd3243041df67adcc1905f773e6d4939658166deeecb |
|
MD5 | 5c03af047d9bc2550eae0742dd5e6115 |
|
BLAKE2b-256 | 3446b2633cf2b011a55e78ad81129d48bf3be810cbc73a21c802f7ebb4285104 |