Skip to main content

A lightweight dict-like config library with validation support

Project description

cfgdict

A lightweight dict-like config library with validation support

Features

  • Supports nested dictionary structures
  • Provides configuration validation with customizable rules
  • Includes utility functions for flattening and reconstructing dictionaries
  • Easy-to-use API for creating and managing configurations

Installation

You can install cfgdict directly from GitHub using pip:

pip install cfgdict
pip install git+https://github.com/gseismic/cfgdict.git

Usage

Creating a Config

import os
from cfgdict import Config

config_schema = [
    dict(field='API_KEY', required=True, rules=dict(type='str')),
    dict(field='n_step', required=True, default=3, rules=dict(type='int', gt=0)),
    dict(field='learning_rate', required=True, default=0.1, rules=dict(type='float', gt=0, max=1)),
    dict(field='nest.gamma', required=True, default=0.99, rules=dict(type='float', min=0, max=1)),
    dict(field='nest.epsilon', required=True, default=0.1, rules=dict(type='float', min=0, max=1)),
    dict(field='nest.verbose_freq', required=True, default=10, rules=dict(type='int', gt=0)),
]

os.environ['API_KEY'] = 'secret'

# '!env API_KEY': read from env
# inspired by https://github.com/drkostas/yaml-config-wrapper 
cfg_dict = {
    'API_KEY': '!env API_KEY',
    'n_step': 3,
    'learning_rate': 0.1,
    'nest': {
        'gamma': 0.99,
        'epsilon': 0.1,
        'verbose_freq': 10
    }
}

config = Config.from_dict(cfg_dict, schema=config_schema, strict=True)
print(config.to_dict())

Flattening and Unflattening Dictionaries

from cfgdict import flatten_dict, unflatten_dict

nested_dict = {
    'a': 1,
    'b': {
        'c': 2,
        'd': {
            'e': 3
        }
    },
    'f': 4
}

flattened = flatten_dict(nested_dict)
print(f'Flattened: {flattened}')
# Output: {'a': 1, 'b.c': 2, 'b.d.e': 3, 'f': 4}

unflattened = unflatten_dict(flattened)
print(f'Unflattened: {unflattened}')
# Output: {'a': 1, 'b': {'c': 2, 'd': {'e': 3}}, 'f': 4}

Validation Rules

cfgdict supports the following validation rules:

  • type: Specify field type (e.g., 'int', 'float', 'str', etc.)
  • required: Whether the field is required (True/False)
  • default: Default value if not provided

Comparison operators:

  • eq: Equal to
  • ne: Not equal to
  • gt: Greater than
  • ge: Greater than or equal to
  • lt: Less than
  • le: Less than or equal to
  • min: Minimum value (inclusive)
  • max: Maximum value (inclusive)

Example usage:

config_schema = [
    dict(field='age', required=True, rules=dict(type='int', ge=18, lt=100)),
    dict(field='score', required=False, default=0, rules=dict(type='float', min=0, max=100)),
    dict(field='status', required=True, rules=dict(type='str', ne='inactive')),
]

In this example:

  • 'age' must be an integer, greater than or equal to 18, and less than 100
  • 'score' is optional with a default of 0, must be a float between 0 and 100 (inclusive)
  • 'status' is required and must be a string not equal to 'inactive'

Nested configurations with logger

set verbose=True

cfgdict supports nested configurations:

from cfgdict import Config

nested_schema = [
    dict(field='database.host', required=True, rules=dict(type='str')),
    dict(field='database.port', required=True, rules=dict(type='int', min=1, max=65535)),
    dict(field='api.version', required=True, rules=dict(type='str')),
    dict(field='api.endpoints.users', required=True, rules=dict(type='str')),
    dict(field='api.endpoints.products', required=True, rules=dict(type='str')),
]

nested_config = Config.from_dict({
    'database': {
        'host': 'localhost',
        'port': 5432
    },
    'api': {
        'version': 'v1',
        'endpoints': {
            'users': '/api/v1/users',
            'products': '/api/v1/products'
        }
    }
}, schema=nested_schema, verbose=True)
# verbose=True: log enabled

print(config.to_dict())

Custom Validation Rules

You can extend the validation system with custom rules:

from cfgdict import Config, ConfigValidationError

def validate_even(value):
    if value % 2 != 0:
        raise ConfigValidationError(f"Value {value} is not even")

config_schema = [
    dict(field='even_number', required=True, rules=dict(type='int', custom=validate_even))
]

config = Config.from_dict({'even_number': 4}, schema=config_schema) 
 # Valid
# config = Config.from_dict({'even_number': 3}, schema=config_schema)  # Raises ValidationError

More Examples

For more usage examples, please refer to:

ChangeLog

  • 2024-09-26 support read from env

Contributing

We welcome issue reports and pull requests. If you have any suggestions or improvements, please feel free to contribute.

License

This project is licensed under the MIT License. See the LICENSE file for details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cfgdict-1.0.2.tar.gz (11.6 kB view details)

Uploaded Source

Built Distribution

cfgdict-1.0.2-py3-none-any.whl (8.4 kB view details)

Uploaded Python 3

File details

Details for the file cfgdict-1.0.2.tar.gz.

File metadata

  • Download URL: cfgdict-1.0.2.tar.gz
  • Upload date:
  • Size: 11.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.2

File hashes

Hashes for cfgdict-1.0.2.tar.gz
Algorithm Hash digest
SHA256 609cf92f9d5695f956da10a16603b9789d2fe4b8ed5f233d7b6b8964332324c5
MD5 b248b53af72827c983f78595fe9e7d4b
BLAKE2b-256 6fab9a853eebf7c5d6bd5afdb0f2f62da4fb32f7943ae0d814a2450671c29be5

See more details on using hashes here.

File details

Details for the file cfgdict-1.0.2-py3-none-any.whl.

File metadata

  • Download URL: cfgdict-1.0.2-py3-none-any.whl
  • Upload date:
  • Size: 8.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.2

File hashes

Hashes for cfgdict-1.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 38d603bd47a5fc053c4ddc8e94a2ae10d79f0ff4d492673eb37d9ae97eba967c
MD5 966fb8dd4653e73fcdcedaca0120f446
BLAKE2b-256 410de4c0e1facaba722d7fa49653a81d225b2608a5e0b64361ca56972ac02b3c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page