Skip to main content

A lightweight dict-like config library with validation support

Project description

cfgdict

A lightweight dict-like config library with validation support

Features

  • Supports nested dictionary structures
  • Provides configuration validation with customizable rules
  • Includes utility functions for flattening and reconstructing dictionaries
  • Easy-to-use API for creating and managing configurations
  • Support reading from environ by !env ENV_XXX, inspired by https://github.com/drkostas/yaml-config-wrapper

Installation

You can install cfgdict directly from GitHub using pip:

pip install cfgdict
pip install git+https://github.com/gseismic/cfgdict.git

Usage

Creating a Config

import os
from cfgdict import Config

config_schema = [
    dict(field='API_KEY', required=True, rules=dict(type='str')),
    dict(field='n_step', required=True, default=3, rules=dict(type='int', gt=0)),
    dict(field='learning_rate', required=True, default=0.1, rules=dict(type='float', gt=0, max=1)),
    dict(field='nest.gamma', required=True, default=0.99, rules=dict(type='float', min=0, max=1)),
    dict(field='nest.epsilon', required=True, default=0.1, rules=dict(type='float', min=0, max=1)),
    dict(field='nest.verbose_freq', required=True, default=10, rules=dict(type='int', gt=0)),
]

os.environ['API_KEY'] = 'secret'

# '!env API_KEY': read from env
# inspired by https://github.com/drkostas/yaml-config-wrapper 
cfg_dict = {
    'API_KEY': '!env API_KEY',
    'n_step': 3,
    'learning_rate': 0.1,
    'nest': {
        'gamma': 0.99,
        'epsilon': 0.1,
        'verbose_freq': 10
    }
}

cfg = Config.from_dict(cfg_dict, schema=config_schema, strict=True)
print(cfg.to_dict())

# or use make_config [recommended]
cfg = make_config(cfg_dict, config_schema, strict=True)
print(cfg.to_dict())

# or use make_config with to_dict=True
cfg = make_config(cfg_dict, config_schema, strict=True, to_dict=True, logger=None, verbose=False)
print(cfg) # python-dict

# or use make_config with to_dict_flatten=True
cfg = make_config(cfg_dict, config_schema, strict=True, to_dict=True, to_dict_flatten=True)
print(cfg) # python-dict

# or use make_config with to_dict_sep
cfg = make_config(cfg_dict, config_schema, strict=True, to_dict=True, to_dict_flatten=True, to_dict_sep='.')
print(cfg) # python-dict

Flattening and Unflattening Dictionaries

from cfgdict import flatten_dict, unflatten_dict

nested_dict = {
    'a': 1,
    'b': {
        'c': 2,
        'd': {
            'e': 3
        }
    },
    'f': 4
}

flattened = flatten_dict(nested_dict)
print(f'Flattened: {flattened}')
# Output: {'a': 1, 'b.c': 2, 'b.d.e': 3, 'f': 4}

unflattened = unflatten_dict(flattened)
print(f'Unflattened: {unflattened}')
# Output: {'a': 1, 'b': {'c': 2, 'd': {'e': 3}}, 'f': 4}

Validation Rules

cfgdict supports the following validation rules:

  • type: Specify field type (e.g., 'int', 'float', 'str', etc.)
  • required: Whether the field is required (True/False)
  • default: Default value if not provided

Comparison operators:

  • eq: Equal to
  • ne: Not equal to
  • gt: Greater than
  • ge: Greater than or equal to
  • lt: Less than
  • le: Less than or equal to
  • min: Minimum value (inclusive)
  • max: Maximum value (inclusive)

Example usage:

config_schema = [
    dict(field='age', required=True, rules=dict(type='int', ge=18, lt=100)),
    dict(field='score', required=False, default=0, rules=dict(type='float', min=0, max=100)),
    dict(field='status', required=True, rules=dict(type='str', ne='inactive')),
]

In this example:

  • 'age' must be an integer, greater than or equal to 18, and less than 100
  • 'score' is optional with a default of 0, must be a float between 0 and 100 (inclusive)
  • 'status' is required and must be a string not equal to 'inactive'

Nested configurations with logger

set verbose=True

cfgdict supports nested configurations:

from cfgdict import Config

nested_schema = [
    dict(field='database.host', required=True, rules=dict(type='str')),
    dict(field='database.port', required=True, rules=dict(type='int', min=1, max=65535)),
    dict(field='api.version', required=True, rules=dict(type='str')),
    dict(field='api.endpoints.users', required=True, rules=dict(type='str')),
    dict(field='api.endpoints.products', required=True, rules=dict(type='str')),
]

nested_config = Config.from_dict({
    'database': {
        'host': 'localhost',
        'port': 5432
    },
    'api': {
        'version': 'v1',
        'endpoints': {
            'users': '/api/v1/users',
            'products': '/api/v1/products'
        }
    }
}, schema=nested_schema, verbose=True)
# verbose=True: log enabled

print(config.to_dict())

Custom Validation Rules

You can extend the validation system with custom rules:

from cfgdict import Config, ConfigValidationError

def validate_even(value):
    if value % 2 != 0:
        raise ConfigValidationError(f"Value {value} is not even")

config_schema = [
    dict(field='even_number', required=True, rules=dict(type='int', custom=validate_even))
]

config = Config.from_dict({'even_number': 4}, schema=config_schema) 
 # Valid
# config = Config.from_dict({'even_number': 3}, schema=config_schema)  # Raises ValidationError

More Examples

For more usage examples, please refer to:

ChangeLog

  • 2024-09-26 support read from env

Contributing

We welcome issue reports and pull requests. If you have any suggestions or improvements, please feel free to contribute.

License

This project is licensed under the MIT License. See the LICENSE file for details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cfgdict-1.0.5.tar.gz (11.9 kB view details)

Uploaded Source

Built Distribution

cfgdict-1.0.5-py3-none-any.whl (8.6 kB view details)

Uploaded Python 3

File details

Details for the file cfgdict-1.0.5.tar.gz.

File metadata

  • Download URL: cfgdict-1.0.5.tar.gz
  • Upload date:
  • Size: 11.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.2

File hashes

Hashes for cfgdict-1.0.5.tar.gz
Algorithm Hash digest
SHA256 1dd778eea97b35e2fce8b3b0ec1744c82e566b5b300edfad85e71b9602ff148f
MD5 be9b7c4d305ff2a0feaf6d084f6b4337
BLAKE2b-256 a7cedc99066f4c760e6bd3ac77cea98d929c4d3c72ab64e0a8af0badeadd8c83

See more details on using hashes here.

File details

Details for the file cfgdict-1.0.5-py3-none-any.whl.

File metadata

  • Download URL: cfgdict-1.0.5-py3-none-any.whl
  • Upload date:
  • Size: 8.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.2

File hashes

Hashes for cfgdict-1.0.5-py3-none-any.whl
Algorithm Hash digest
SHA256 c4fe2e2dcebc35837ef1cdd13e9e382725be5115bc196c366ffaf1e79374378c
MD5 a799e82346a80d4bc82c9db42fa6edb7
BLAKE2b-256 5bba5be3f70a859689de223a0763544c5f66063ba730041c1bc9f8c08eeb9030

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page