Skip to main content

A lightweight dict-like config library with validation support

Project description

cfgdict

A lightweight dict-like config library with validation support

Features

  • Supports nested dictionary structures
  • Provides configuration validation with customizable rules
  • Includes utility functions for flattening and reconstructing dictionaries
  • Easy-to-use API for creating and managing configurations
  • Support reading from environ by !env ENV_XXX, inspired by https://github.com/drkostas/yaml-config-wrapper

Installation

You can install cfgdict directly from GitHub using pip:

pip install cfgdict
pip install git+https://github.com/gseismic/cfgdict.git

Usage

Creating a Config

import os
from cfgdict import Config

config_schema = [
    dict(field='API_KEY', required=True, rules=dict(type='str')),
    dict(field='n_step', required=True, default=3, rules=dict(type='int', gt=0)),
    dict(field='learning_rate', required=True, default=0.1, rules=dict(type='float', gt=0, max=1)),
    dict(field='nest.gamma', required=True, default=0.99, rules=dict(type='float', min=0, max=1)),
    dict(field='nest.epsilon', required=True, default=0.1, rules=dict(type='float', min=0, max=1)),
    dict(field='nest.verbose_freq', required=True, default=10, rules=dict(type='int', gt=0)),
]

os.environ['API_KEY'] = 'secret'

# '!env API_KEY': read from env
# inspired by https://github.com/drkostas/yaml-config-wrapper 
cfg_dict = {
    'API_KEY': '!env API_KEY',
    'n_step': 3,
    'learning_rate': 0.1,
    'nest': {
        'gamma': 0.99,
        'epsilon': 0.1,
        'verbose_freq': 10
    }
}

cfg = Config.from_dict(cfg_dict, schema=config_schema, strict=True)
print(cfg.to_dict())

# or use make_config [recommended]
cfg = make_config(cfg_dict, config_schema, strict=True)
print(cfg.to_dict())

# or use make_config with to_dict=True
cfg = make_config(cfg_dict, config_schema, strict=True, to_dict=True, logger=None, verbose=False)
print(cfg) # python-dict

# or use make_config with to_dict_flatten=True
cfg = make_config(cfg_dict, config_schema, strict=True, to_dict=True, to_dict_flatten=True)
print(cfg) # python-dict

# or use make_config with to_dict_sep
cfg = make_config(cfg_dict, config_schema, strict=True, to_dict=True, to_dict_flatten=True, to_dict_sep='.')
print(cfg) # python-dict

Flattening and Unflattening Dictionaries

from cfgdict import flatten_dict, unflatten_dict

nested_dict = {
    'a': 1,
    'b': {
        'c': 2,
        'd': {
            'e': 3
        }
    },
    'f': 4
}

flattened = flatten_dict(nested_dict)
print(f'Flattened: {flattened}')
# Output: {'a': 1, 'b.c': 2, 'b.d.e': 3, 'f': 4}

unflattened = unflatten_dict(flattened)
print(f'Unflattened: {unflattened}')
# Output: {'a': 1, 'b': {'c': 2, 'd': {'e': 3}}, 'f': 4}

Validation Rules

cfgdict supports the following validation rules:

  • type: Specify field type (e.g., 'int', 'float', 'str', etc.)
  • required: Whether the field is required (True/False)
  • default: Default value if not provided

Comparison operators:

  • eq: Equal to
  • ne: Not equal to
  • gt: Greater than
  • ge: Greater than or equal to
  • lt: Less than
  • le: Less than or equal to
  • min: Minimum value (inclusive)
  • max: Maximum value (inclusive)
  • custom: Custom validation function
  • len: Length of the field (e.g., 'str', 'list', 'dict')
  • choices: Choices of the field (e.g., 'str', 'list', 'dict')
  • pattern: Regular expression pattern for string validation
  • unique: Ensure all elements in a list are unique
  • contains: Ensure a value is in a list
  • range: Range of the field (e.g., 'int', 'float')
  • allowed_values: Allowed values for the field (e.g., 'str', 'list', 'dict')
  • disallowed_values: Disallowed values for the field (e.g., 'str', 'list', 'dict')

Example usage:

config_schema = [
    dict(field='age', required=True, rules=dict(type='int', ge=18, lt=100)),
    dict(field='score', required=False, default=0, rules=dict(type='float', min=0, max=100)),
    dict(field='status', required=True, rules=dict(type='str', ne='inactive')),
]

In this example:

  • 'age' must be an integer, greater than or equal to 18, and less than 100
  • 'score' is optional with a default of 0, must be a float between 0 and 100 (inclusive)
  • 'status' is required and must be a string not equal to 'inactive'

Nested configurations with logger

set verbose=True

cfgdict supports nested configurations:

from cfgdict import Config

nested_schema = [
    dict(field='database.host', required=True, rules=dict(type='str')),
    dict(field='database.port', required=True, rules=dict(type='int', min=1, max=65535)),
    dict(field='api.version', required=True, rules=dict(type='str')),
    dict(field='api.endpoints.users', required=True, rules=dict(type='str')),
    dict(field='api.endpoints.products', required=True, rules=dict(type='str')),
]

nested_config = Config.from_dict({
    'database': {
        'host': 'localhost',
        'port': 5432
    },
    'api': {
        'version': 'v1',
        'endpoints': {
            'users': '/api/v1/users',
            'products': '/api/v1/products'
        }
    }
}, schema=nested_schema, verbose=True)
# verbose=True: log enabled

print(config.to_dict())

Custom Validation Rules

You can extend the validation system with custom rules:

from cfgdict import Config, ConfigValidationError

def validate_even(value):
    if value % 2 != 0:
        raise ConfigValidationError(f"Value {value} is not even")

config_schema = [
    dict(field='even_number', required=True, rules=dict(type='int', custom=validate_even))
]

config = Config.from_dict({'even_number': 4}, schema=config_schema) 
 # Valid
# config = Config.from_dict({'even_number': 3}, schema=config_schema)  # Raises ValidationError

More Examples

For more usage examples, please refer to:

ChangeLog

  • 2024-09-26 support read from env

Contributing

We welcome issue reports and pull requests. If you have any suggestions or improvements, please feel free to contribute.

License

This project is licensed under the MIT License. See the LICENSE file for details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cfgdict-1.0.7.tar.gz (14.3 kB view details)

Uploaded Source

Built Distribution

cfgdict-1.0.7-py3-none-any.whl (9.4 kB view details)

Uploaded Python 3

File details

Details for the file cfgdict-1.0.7.tar.gz.

File metadata

  • Download URL: cfgdict-1.0.7.tar.gz
  • Upload date:
  • Size: 14.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.2

File hashes

Hashes for cfgdict-1.0.7.tar.gz
Algorithm Hash digest
SHA256 661f7bfa61daeaf379c8bb315c2fbada704d7a1216f9a6d07627bb5b99e277b3
MD5 c9517950a476145542de5f4b4bb8a0e9
BLAKE2b-256 8f134976c13dbaaf4b3ae878cef3183ddea4b118540231754cbbe7d984e84c5a

See more details on using hashes here.

File details

Details for the file cfgdict-1.0.7-py3-none-any.whl.

File metadata

  • Download URL: cfgdict-1.0.7-py3-none-any.whl
  • Upload date:
  • Size: 9.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.2

File hashes

Hashes for cfgdict-1.0.7-py3-none-any.whl
Algorithm Hash digest
SHA256 378b87af273bf7e54e98f05b0686d942eca3aea125246c04d46baf6416b54a1d
MD5 f6638d781987e7395b73d50583eea2cd
BLAKE2b-256 0a1ccaf0449f373139b2209445545bd028928216a0f446878e4b9b0f4c20926f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page