Skip to main content

Python interface to map GRIB files to the NetCDF Common Data Model following the CF Convention using ecCodes.

Project description

Python interface to map GRIB files to the NetCDF Common Data Model following the CF Conventions. The high level API is designed to support a GRIB backend for xarray and it is inspired by NetCDF-python and h5netcdf. Low level access and decoding is performed via the ECMWF ecCodes library.

Features:

  • map a GRIB file to a set of N-dimensional variables following the NetCDF Common Data Model,

  • map CF Conventions attributes coordinate and data variables,

  • access data variable values from disk efficiently,

  • provisional xarray GRIB driver,

  • no write support yet.

Installation

The package is installed from PyPI with:

$ pip install cfgrib

System dependencies

The python module depends on the ECMWF ecCodes library that must be installed on the system and accessible as a shared library. Some Linux distributions ship a binary version of ecCodes that may be installed with the standard package manager. On Ubuntu 18.04 use the command:

$ sudo apt-get install libeccodes0

On a MacOS with HomeBrew use:

$ brew install eccodes

As an alternative you may install the official source distribution by following the ecCodes instructions at https://software.ecmwf.int/wiki/display/ECC/ecCodes+installation

Note that ecCodes support for the Windows operating system is experimental.

You may run a simple self-check command to ensure that your system is set up correctly:

$ python -m cfgrib --selfcheck
Found: ecCodes v2.7.0.
Your system is ready.

Usage

First, you need a well-formed GRIB file, if you don’t have one at hand you can download our ERA5 on pressure levels sample:

$ wget http://download.ecmwf.int/test-data/cfgrib/era5-levels-members.grib

Dataset / Variable API

You may try out the high level API in a python interpreter:

>>> import cfgrib
>>> ds = cfgrib.Dataset.frompath('era5-levels-members.grib')
>>> ds.attributes['GRIB_edition']
1
>>> ds.dimensions.items()
[('number', 10), ('forecast_reference_time', 4), ('air_pressure', 2), ('latitude', 61), ('longitude', 120)]
>>> sorted(ds.variables)
['air_pressure', 'forecast_period', 'forecast_reference_time', 'latitude', 'longitude', 'number', 't', 'time', 'z']
>>> var = ds.variables['t']
>>> var.dimensions
('number', 'forecast_reference_time', 'air_pressure', 'latitude', 'longitude')
>>> var.data[:, :, :, :, :].mean()
262.92133

Provisional xarray GRIB driver

If you have xarray installed cfgrib can open a GRIB file as a xarray.Dataset:

$ pip install xarray

In a Python interpreter try:

>>> from cfgrib import xarray_store
>>> ds = xarray_store.open_dataset('era5-levels-members.grib')
>>> ds
<xarray.Dataset>
Dimensions:     (latitude: 61, level: 2, longitude: 120, number: 10, time: 4)
Coordinates:
  * number      (number) int64 0 1 2 3 4 5 6 7 8 9
  * time        (time) datetime64[ns] 2017-01-01 2017-01-01T12:00:00 ...
    step        timedelta64[ns] ...
  * level       (level) float64 8.5e+04 5e+04
  * latitude    (latitude) float64 90.0 87.0 84.0 81.0 78.0 75.0 72.0 69.0 ...
  * longitude   (longitude) float64 0.0 3.0 6.0 9.0 12.0 15.0 18.0 21.0 24.0 ...
    valid_time  (time) datetime64[ns] ...
Data variables:
    z           (number, time, level, latitude, longitude) float32 ...
    t           (number, time, level, latitude, longitude) float32 ...
Attributes:
    GRIB_edition:            1
    GRIB_centre:             ecmf
    GRIB_centreDescription:  European Centre for Medium-Range Weather Forecasts
    GRIB_subCentre:          0
    GRIB_table2Version:      128
    history:                 GRIB to CDM+CF via cfgrib-0.8.0/ecCodes-2.7.0

Lower level APIs

Lower level APIs are not stable and should not be considered public yet. In particular the internal Python 3 ecCodes bindings are not compatible with the standard ecCodes python module.

Contributing

Contributions are very welcome. Please see the CONTRIBUTING.rst document for the best way to help. If you encounter any problems, please file an issue along with a detailed description.

Lead developer:

Main contributors:

See also the list of contributors who participated in this project.

License

Copyright 2017-2018 European Centre for Medium-Range Weather Forecasts (ECMWF).

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in compliance with the License. You may obtain a copy of the License at: http://www.apache.org/licenses/LICENSE-2.0. Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cfgrib-0.8.1.tar.gz (2.3 MB view details)

Uploaded Source

Built Distribution

cfgrib-0.8.1-py2.py3-none-any.whl (26.4 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file cfgrib-0.8.1.tar.gz.

File metadata

  • Download URL: cfgrib-0.8.1.tar.gz
  • Upload date:
  • Size: 2.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for cfgrib-0.8.1.tar.gz
Algorithm Hash digest
SHA256 ec50c122a18f0ac897afa8ca6932d8806f367fb0003f65ff967e96e5c88fa1a7
MD5 b9740af29714bad0263529741e8536d8
BLAKE2b-256 74296c0f39038ef07da21d6b65881cdc8bdf5f7cdcfe49f180c3b92f1c4e88f1

See more details on using hashes here.

File details

Details for the file cfgrib-0.8.1-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for cfgrib-0.8.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 52bd55971b620dfe0998119d98c0e4163fb097f9df0c0e3e6653113133e79a48
MD5 80750e96a29bcd726435f3f93fba6c60
BLAKE2b-256 c82c4f85bfda07db177bca8d95813a1afae8e90bb6d07bb994a07f8de9e9598b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page