Skip to main content

Python interface to map GRIB files to the NetCDF Common Data Model following the CF Convention using ecCodes.

Project description


Python interface to map GRIB files to the
`Unidata's Common Data Model v4 <https://www.unidata.ucar.edu/software/thredds/current/netcdf-java/CDM/>`_
following the `CF Conventions <http://cfconventions.org/>`_.
The high level API is designed to support a GRIB backend for `xarray <http://xarray.pydata.org/>`_
and it is inspired by `netCDF4-python <http://unidata.github.io/netcdf4-python/>`_
and `h5netcdf <https://github.com/shoyer/h5netcdf>`_.
Low level access and decoding is performed via the
`ECMWF ecCodes library <https://software.ecmwf.int/wiki/display/ECC/>`_.

Features with development status **Beta**:

- read-only GRIB driver for *xarray*,
- reads most GRIB 1 and 2 files, for limitations see the *Advanced usage* section below and
`#13 <https://github.com/ecmwf/cfgrib/issues/13>`_,
- supports all modern versions of Python 3.7, 3.6, 3.5 and 2.7, plus PyPy and PyPy3,
- works on most *Linux* distributions and *MacOS*, the *ecCodes* C-library is the only system dependency,
- PyPI package with no install time build (binds with *CFFI* ABI mode),
- reads the data lazily and efficiently in terms of both memory usage and disk access.

Work in progress:

- **Alpha** supports writing the index of a GRIB file to disk, to save a full-file scan on open,
see `#20 <https://github.com/ecmwf/cfgrib/issues/20>`_.
- **Pre-Alpha** limited support to write carefully-crafted ``xarray.Dataset``'s to a GRIB2 file,
see the *Advanced write usage* section below and
`#18 <https://github.com/ecmwf/cfgrib/issues/18>`_,

Limitations:

- no *conda* package, for now,
see `#5 <https://github.com/ecmwf/cfgrib/issues/5>`_,
- *PyPI* binary packages do not include *ecCodes*,
see `#22 <https://github.com/ecmwf/cfgrib/issues/22>`_,
- incomplete documentation, for now,
- no Windows support,
see `#7 <https://github.com/ecmwf/cfgrib/issues/7>`_,
- no support for opening multiple GRIB files,
see `#15 <https://github.com/ecmwf/cfgrib/issues/15>`_,
- relies on *ecCodes* for the CF attributes of the data variables,
- relies on *ecCodes* for anything related to coordinate systems / ``gridType``,
see `#28 <https://github.com/ecmwf/cfgrib/issues/28>`_.


Installation
============

The package is installed from PyPI with::

$ pip install cfgrib


System dependencies
-------------------

The Python module depends on the ECMWF *ecCodes* library
that must be installed on the system and accessible as a shared library.
Some Linux distributions ship a binary version that may be installed with the standard package manager.
On Ubuntu 18.04 use the command::

$ sudo apt-get install libeccodes0

On a MacOS with HomeBrew use::

$ brew install eccodes

Or if you manage binary packages with *Conda* use::

$ conda install eccodes

As an alternative you may install the official source distribution
by following the instructions at
https://software.ecmwf.int/wiki/display/ECC/ecCodes+installation

Note that *ecCodes* support for the Windows operating system is experimental.

You may run a simple selfcheck command to ensure that your system is set up correctly::

$ python -m cfgrib selfcheck
Found: ecCodes v2.7.0.
Your system is ready.


Usage
=====

First, you need a well-formed GRIB file, if you don't have one at hand you can download our
`ERA5 on pressure levels sample <http://download.ecmwf.int/test-data/cfgrib/era5-levels-members.grib>`_::

$ wget http://download.ecmwf.int/test-data/cfgrib/era5-levels-members.grib


Dataset / Variable API
----------------------

You may try out the high level API in a Python interpreter:

.. code-block: python

>>> import cfgrib
>>> ds = cfgrib.open_file('era5-levels-members.grib')
>>> ds.attributes['GRIB_edition']
1
>>> sorted(ds.dimensions.items())
[('isobaricInhPa', 2), ('latitude', 61), ('longitude', 120), ('number', 10), ('time', 4)]
>>> sorted(ds.variables)
['isobaricInhPa', 'latitude', 'longitude', 'number', 'step', 't', 'time', 'valid_time', 'z']
>>> var = ds.variables['t']
>>> var.dimensions
('number', 'time', 'isobaricInhPa', 'latitude', 'longitude')
>>> var.data[:, :, :, :, :].mean()
262.92133
>>> ds = cfgrib.open_file('era5-levels-members.grib')
>>> ds.attributes['GRIB_edition']
1
>>> sorted(ds.dimensions.items())
[('isobaricInhPa', 2), ('latitude', 61), ('longitude', 120), ('number', 10), ('time', 4)]
>>> sorted(ds.variables)
['isobaricInhPa', 'latitude', 'longitude', 'number', 'step', 't', 'time', 'valid_time', 'z']
>>> var = ds.variables['t']
>>> var.dimensions
('number', 'time', 'isobaricInhPa', 'latitude', 'longitude')
>>> var.data[:, :, :, :, :].mean()
262.92133


Read-only *xarray* GRIB driver
------------------------------

Additionally if you have *xarray* installed ``cfgrib`` can open a GRIB file as a ``xarray.Dataset``::

$ pip install xarray>=0.10.9

In a Python interpreter try:

.. code-block: python

>>> ds = cfgrib.open_dataset('era5-levels-members.grib')
>>> ds
<xarray.Dataset>
Dimensions: (isobaricInhPa: 2, latitude: 61, longitude: 120, number: 10, time: 4)
Coordinates:
* number (number) int64 0 1 2 3 4 5 6 7 8 9
* time (time) datetime64[ns] 2017-01-01 ... 2017-01-02T12:00:00
step timedelta64[ns] ...
* isobaricInhPa (isobaricInhPa) int64 850 500
* latitude (latitude) float64 90.0 87.0 84.0 81.0 ... -84.0 -87.0 -90.0
* longitude (longitude) float64 0.0 3.0 6.0 9.0 ... 351.0 354.0 357.0
valid_time (time) datetime64[ns] ...
Data variables:
z (number, time, isobaricInhPa, latitude, longitude) float32 ...
t (number, time, isobaricInhPa, latitude, longitude) float32 ...
Attributes:
GRIB_edition: 1
GRIB_centre: ecmf
GRIB_centreDescription: European Centre for Medium-Range Weather Forecasts
GRIB_subCentre: 0
history: GRIB to CDM+CF via cfgrib-0.9.../ecCodes-2...

GRIB index file
---------------

By default *cfgrib* saves the index of the GRIB file to disk appending ``.idx``
to the GRIB file name.
Index files are an **experimental** and completely optional feature, feel free to
remove them and try again in case of problems. Index files saving can be disable passing
adding ``indexpath=''`` to the ``backend_kwargs`` keyword argument.


Lower level APIs
----------------

Lower level APIs are not stable and should not be considered public yet.
In particular the internal Python 3 *ecCodes* bindings are not compatible with
the standard *ecCodes* python module.


Advanced usage
==============

``cfgrib.Dataset`` and ``cfgrib.open_dataset`` can open a GRIB file only if all the messages
with the same ``shortName`` can be represented as a single ``cfgrib.Variable`` hypercube.
For example, a variable ``t`` cannot have both ``isobaricInhPa`` and ``hybrid`` ``typeOfLevel``'s,
as this would result in multiple hypercubes for variable ``t``.
Opening a non-conformant GRIB file will fail with a ``ValueError: multiple values for unique key...``
error message, see `#2 <https://github.com/ecmwf/cfgrib/issues/2>`_.

Furthermore if different ``cfgrib.Variable``'s depend on the same coordinate,
the values of the coordinate must match exactly.
For example, if variables ``t`` and ``z`` share the same step coordinate,
they must both have exactly the same set of steps.
Opening a non-conformant GRIB file will fail with a ``ValueError: key present and new value is different...``
error message, see `#13 <https://github.com/ecmwf/cfgrib/issues/13>`_.

In most cases you can handle complex GRIB files containing heterogeneous messages by using
the ``filter_by_keys`` key in ``backend_kwargs`` to select which GRIB messages belong to a
well formed set of hypercubes.

For example to open
`US National Weather Service complex GRIB2 files <http://ftpprd.ncep.noaa.gov/data/nccf/com/nam/prod/>`_
you can use:

.. code-block: python

>>> cfgrib.open_dataset('nam.t00z.awp21100.tm00.grib2',
... backend_kwargs={'filter_by_keys': {'typeOfLevel': 'surface', 'stepType': 'instant'}})
<xarray.Dataset>
Dimensions: (x: 93, y: 65)
Coordinates:
time datetime64[ns] ...
step timedelta64[ns] ...
surface int64 ...
latitude (y, x) float64 ...
longitude (y, x) float64 ...
valid_time datetime64[ns] ...
Dimensions without coordinates: x, y
Data variables:
gust (y, x) float32 ...
sp (y, x) float32 ...
orog (y, x) float32 ...
csnow (y, x) float32 ...
Attributes:
GRIB_edition: 2
GRIB_centre: kwbc
GRIB_centreDescription: US National Weather Service - NCEP...
GRIB_subCentre: 0
history: GRIB to CDM+CF via cfgrib-0.9.../ecCodes-2...
>>> cfgrib.open_dataset('nam.t00z.awp21100.tm00.grib2',
... backend_kwargs={'filter_by_keys': {'typeOfLevel': 'heightAboveGround', 'level': 2}})
<xarray.Dataset>
Dimensions: (x: 93, y: 65)
Coordinates:
time datetime64[ns] ...
step timedelta64[ns] ...
heightAboveGround int64 ...
latitude (y, x) float64 ...
longitude (y, x) float64 ...
valid_time datetime64[ns] ...
Dimensions without coordinates: x, y
Data variables:
t2m (y, x) float32 ...
r2 (y, x) float32 ...
Attributes:
GRIB_edition: 2
GRIB_centre: kwbc
GRIB_centreDescription: US National Weather Service - NCEP...
GRIB_subCentre: 0
history: GRIB to CDM+CF via cfgrib-0.9.../ecCodes-2...

*cfgrib* also provides an **experimental function** that automate the selection of
appropriate ``filter_by_keys`` and returns a list of all valid ``xarray.Dataset``'s
in the GRIB file (add ``backend_kwargs={'errors': 'ignore'}`` for extra robustness).
The ``open_datasets`` is intended for interactive exploration of a file
and it is not part of the stable API. In the future it may change or be removed altogether.

.. code-block: python

>>> from cfgrib import xarray_store
>>> xarray_store.open_datasets('nam.t00z.awp21100.tm00.grib2', backend_kwargs={'errors': 'ignore'})
[<xarray.Dataset>
Dimensions: (isobaricInhPa: 19, x: 93, y: 65)
Coordinates:
time datetime64[ns] ...
step timedelta64[ns] ...
* isobaricInhPa (isobaricInhPa) int64 1000 950 900 ... 150 100
latitude (y, x) float64 ...
longitude (y, x) float64 ...
valid_time datetime64[ns] ...
Dimensions without coordinates: x, y
Data variables:
gh (isobaricInhPa, y, x) float32 ...
t (isobaricInhPa, y, x) float32 ...
r (isobaricInhPa, y, x) float32 ...
w (isobaricInhPa, y, x) float32 ...
u (isobaricInhPa, y, x) float32 ...
Attributes:
GRIB_edition: 2
GRIB_centre: kwbc
GRIB_centreDescription: US National Weather Service - NCEP...
GRIB_subCentre: 0
history: GRIB to CDM+CF via cfgrib-0.9.../ecCodes-2..., <xarray.Dataset>
Dimensions: (x: 93, y: 65)
Coordinates:
time datetime64[ns] ...
step timedelta64[ns] ...
cloudBase int64 ...
latitude (y, x) float64 ...
longitude (y, x) float64 ...
valid_time datetime64[ns] ...
Dimensions without coordinates: x, y
Data variables:
pres (y, x) float32 ...
gh (y, x) float32 ...
Attributes:
GRIB_edition: 2
GRIB_centre: kwbc
GRIB_centreDescription: US National Weather Service - NCEP...
GRIB_subCentre: 0
history: GRIB to CDM+CF via cfgrib-0.9.../ecCodes-2..., <xarray.Dataset>
Dimensions: (x: 93, y: 65)
Coordinates:
time datetime64[ns] ...
step timedelta64[ns] ...
cloudTop int64 ...
latitude (y, x) float64 ...
longitude (y, x) float64 ...
valid_time datetime64[ns] ...
Dimensions without coordinates: x, y
Data variables:
pres (y, x) float32 ...
gh (y, x) float32 ...
t (y, x) float32 ...
Attributes:
GRIB_edition: 2
GRIB_centre: kwbc
GRIB_centreDescription: US National Weather Service - NCEP...
GRIB_subCentre: 0
history: GRIB to CDM+CF via cfgrib-0.9.../ecCodes-2..., <xarray.Dataset>
Dimensions: (x: 93, y: 65)
Coordinates:
time datetime64[ns] ...
step timedelta64[ns] ...
maxWind int64 ...
latitude (y, x) float64 ...
longitude (y, x) float64 ...
valid_time datetime64[ns] ...
Dimensions without coordinates: x, y
Data variables:
pres (y, x) float32 ...
gh (y, x) float32 ...
u (y, x) float32 ...
Attributes:
GRIB_edition: 2
GRIB_centre: kwbc
GRIB_centreDescription: US National Weather Service - NCEP...
GRIB_subCentre: 0
history: GRIB to CDM+CF via cfgrib-0.9.../ecCodes-2..., <xarray.Dataset>
Dimensions: (x: 93, y: 65)
Coordinates:
time datetime64[ns] ...
step timedelta64[ns] ...
isothermZero int64 ...
latitude (y, x) float64 ...
longitude (y, x) float64 ...
valid_time datetime64[ns] ...
Dimensions without coordinates: x, y
Data variables:
gh (y, x) float32 ...
r (y, x) float32 ...
Attributes:
GRIB_edition: 2
GRIB_centre: kwbc
GRIB_centreDescription: US National Weather Service - NCEP...
GRIB_subCentre: 0
history: GRIB to CDM+CF via cfgrib-0.9.../ecCodes-2...]


Advanced write usage
====================

**Please note that write support is Pre-Alpha and highly experimental.**

Only ``xarray.Dataset``'s in *canonical* form,
that is, with the coordinates names matching exactly the *cfgrib* coordinates,
can be saved at the moment:

.. code-block: python

>>> ds = cfgrib.open_dataset('era5-levels-members.grib')
>>> ds
<xarray.Dataset>
Dimensions: (isobaricInhPa: 2, latitude: 61, longitude: 120, number: 10, time: 4)
Coordinates:
* number (number) int64 0 1 2 3 4 5 6 7 8 9
* time (time) datetime64[ns] 2017-01-01 ... 2017-01-02T12:00:00
step timedelta64[ns] ...
* isobaricInhPa (isobaricInhPa) int64 850 500
* latitude (latitude) float64 90.0 87.0 84.0 81.0 ... -84.0 -87.0 -90.0
* longitude (longitude) float64 0.0 3.0 6.0 9.0 ... 351.0 354.0 357.0
valid_time (time) datetime64[ns] ...
Data variables:
z (number, time, isobaricInhPa, latitude, longitude) float32 ...
t (number, time, isobaricInhPa, latitude, longitude) float32 ...
Attributes:
GRIB_edition: 1
GRIB_centre: ecmf
GRIB_centreDescription: European Centre for Medium-Range Weather Forecasts
GRIB_subCentre: 0
history: GRIB to CDM+CF via cfgrib-0.9.../ecCodes-2...
>>> cfgrib.canonical_dataset_to_grib(ds, 'out1.grib', grib_keys={'edition': 2})
>>> cfgrib.open_dataset('out1.grib')
<xarray.Dataset>
Dimensions: (isobaricInhPa: 2, latitude: 61, longitude: 120, number: 10, time: 4)
Coordinates:
* number (number) int64 0 1 2 3 4 5 6 7 8 9
* time (time) datetime64[ns] 2017-01-01 ... 2017-01-02T12:00:00
step timedelta64[ns] ...
* isobaricInhPa (isobaricInhPa) int64 850 500
* latitude (latitude) float64 90.0 87.0 84.0 81.0 ... -84.0 -87.0 -90.0
* longitude (longitude) float64 0.0 3.0 6.0 9.0 ... 351.0 354.0 357.0
valid_time (time) datetime64[ns] ...
Data variables:
z (number, time, isobaricInhPa, latitude, longitude) float32 ...
t (number, time, isobaricInhPa, latitude, longitude) float32 ...
Attributes:
GRIB_edition: 2
GRIB_centre: ecmf
GRIB_centreDescription: European Centre for Medium-Range Weather Forecasts
GRIB_subCentre: 0
history: GRIB to CDM+CF via cfgrib-0.9.../ecCodes-2...

Per-variable GRIB keys can be set by setting the ``attrs`` variable with key prefixed by ``GRIB_``,
for example:

.. code-block: python

>>> import numpy as np
>>> import xarray as xr
>>> ds2 = xr.DataArray(
... np.zeros((5, 6)) + 300.,
... coords=[
... np.linspace(90., -90., 5),
... np.linspace(0., 360., 6, endpoint=False),
... ],
... dims=['latitude', 'longitude'],
... ).to_dataset(name='skin_temperature')
>>> ds2.skin_temperature.attrs['GRIB_shortName'] = 'skt'
>>> cfgrib.canonical_dataset_to_grib(ds2, 'out2.grib')
>>> cfgrib.open_dataset('out2.grib')
<xarray.Dataset>
Dimensions: (latitude: 5, longitude: 6)
Coordinates:
time datetime64[ns] ...
step timedelta64[ns] ...
surface int64 ...
* latitude (latitude) float64 90.0 45.0 0.0 -45.0 -90.0
* longitude (longitude) float64 0.0 60.0 120.0 180.0 240.0 300.0
valid_time datetime64[ns] ...
Data variables:
skt (latitude, longitude) float32 ...
Attributes:
GRIB_edition: 2
GRIB_centre: consensus
GRIB_centreDescription: Consensus
GRIB_subCentre: 0
history: GRIB to CDM+CF via cfgrib-0.9.../ecCodes-2...


Project resources
=================

============= =========================================================
Development https://github.com/ecmwf/cfgrib
Download https://pypi.org/project/cfgrib
Code quality .. image:: https://api.travis-ci.org/ecmwf/cfgrib.svg?branch=master
:target: https://travis-ci.org/ecmwf/cfgrib/branches
:alt: Build Status on Travis CI
.. image:: https://coveralls.io/repos/ecmwf/cfgrib/badge.svg?branch=master&service=github
:target: https://coveralls.io/github/ecmwf/cfgrib
:alt: Coverage Status on Coveralls
============= =========================================================


Contributing
============

The main repository is hosted on GitHub,
testing, bug reports and contributions are highly welcomed and appreciated:

https://github.com/ecmwf/cfgrib

Please see the CONTRIBUTING.rst document for the best way to help.

Lead developer:

- `Alessandro Amici <https://github.com/alexamici>`_ - `B-Open <https://bopen.eu>`_

Main contributors:

- Baudouin Raoult - `ECMWF <https://ecmwf.int>`_
- `Aureliana Barghini <https://github.com/aurghs>`_ - B-Open
- `Iain Russell <https://github.com/iainrussell>`_ - ECMWF
- `Leonardo Barcaroli <https://github.com/leophys>`_ - B-Open

See also the list of `contributors <https://github.com/ecmwf/cfgrib/contributors>`_ who participated in this project.


License
=======

Copyright 2017-2018 European Centre for Medium-Range Weather Forecasts (ECMWF).

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at: http://www.apache.org/licenses/LICENSE-2.0.
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Changelog for cfgrib
====================

0.9.4 (2018-11-08)
------------------

- Saves one index file per set of ``index_keys`` in a much more robust way.
- Refactor CF-encoding and add the new ``encode_cf`` option to ``backend_kwargs``.
See: `#23 <https://github.com/ecmwf/cfgrib/issues/23>`_.
- Refactor error handling and the option to ignore errors (not well documented yet).
See: `#13 <https://github.com/ecmwf/cfgrib/issues/13>`_.
- Do not crash on ``gridType`` not fully supported by the installed *ecCodes*
See: `#27 https://github.com/ecmwf/cfgrib/issues/27`_.
- Several smaller bug fixes and performance improvements.


0.9.3.1 (2018-10-28)
--------------------

- Assorted README fixes, in particular advertise index file support as alpha.


0.9.3 (2018-10-28)
------------------

- Big performance improvement: add alpha support to save to and read from disk
the GRIB index produced by the full-file scan at the first open.
See: `#20 <https://github.com/ecmwf/cfgrib/issues/20>`_.


0.9.2 (2018-10-22)
------------------

- Rename coordinate ``air_pressure`` to ``isobaricInhPa`` for consistency
with all other vertical ``level`` coordinates.
See: `#25 <https://github.com/ecmwf/cfgrib/issues/25>`_.


0.9.1.post1 (2018-10-19)
------------------------

- Fix PyPI description.


0.9.1 (2018-10-19)
------------------

- Change the usage of ``cfgrib.open_dataset`` to allign it with ``xarray.open_dataset``,
in particular ``filter_by_key`` must be added into the ``backend_kwargs`` dictionary.
See: `#21 <https://github.com/ecmwf/cfgrib/issues/21>`_.

0.9.0 (2018-10-14)
------------------

- Beta release with read support.


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cfgrib-0.9.4.tar.gz (6.2 MB view details)

Uploaded Source

Built Distribution

cfgrib-0.9.4-py2.py3-none-any.whl (41.2 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file cfgrib-0.9.4.tar.gz.

File metadata

  • Download URL: cfgrib-0.9.4.tar.gz
  • Upload date:
  • Size: 6.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.7.0

File hashes

Hashes for cfgrib-0.9.4.tar.gz
Algorithm Hash digest
SHA256 a2b15e13de0587d71c791633eb0e15009ed0ebda5c65c18d601e76afa81c5850
MD5 d5b2fbc9843a2701ef20fb8c76cffc51
BLAKE2b-256 4b7a1a593b225dfba8e018958102ebd924e484e717e6cb345dfbacb2adcf8fc8

See more details on using hashes here.

File details

Details for the file cfgrib-0.9.4-py2.py3-none-any.whl.

File metadata

  • Download URL: cfgrib-0.9.4-py2.py3-none-any.whl
  • Upload date:
  • Size: 41.2 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.7.0

File hashes

Hashes for cfgrib-0.9.4-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 057951818c31ce0d2d868fed74885d14aefa245051c459ea239c5b053bbd5e89
MD5 1b705a2f8a0ee29b40598d601bd3cbd6
BLAKE2b-256 5a8969ae698e06866459f442b8a741e68eb227bddebfaccc1d0536dbe7bc7166

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page