Python package containing Graphs and Grammars for experimental analysis of Context-Free Path Querying algorithms
Project description
CFPQ_Data is a Python package for the creation, manipulation, and study of the structure, dynamics, and functions of complex Graphs and Grammars used for experimental analysis of Context-Free Path Querying algorithms.
Website: https://formallanguageconstrainedpathquerying.github.io/CFPQ_Data
Tutorial: https://formallanguageconstrainedpathquerying.github.io/CFPQ_Data/tutorial.html
Documentation: https://formallanguageconstrainedpathquerying.github.io/CFPQ_Data/reference/index.html
Source Code: https://github.com/formallanguageconstrainedpathquerying/CFPQ_Data
Bug Tracker: https://github.com/formallanguageconstrainedpathquerying/CFPQ_Data/issues
Examples
Dataset content
>>> import cfpq_data
>>> cfpq_data.DATASET
['skos', 'wc', 'generations', 'travel', 'univ', 'atom', 'biomedical', 'bzip', 'foaf', 'people', 'pr', 'funding', 'ls', 'wine', 'pizza', 'gzip', 'core', 'pathways', 'enzyme', 'eclass', 'go_hierarchy', 'go', 'apache', 'init', 'mm', 'geospecies', 'ipc', 'lib', 'block', 'arch', 'crypto', 'security', 'sound', 'net', 'fs', 'drivers', 'postgre', 'kernel', 'taxonomy', 'taxonomy_hierarchy']
Load graph from Dataset
>>> bzip_path = cfpq_data.download("bzip")
>>> bzip = cfpq_data.graph_from_csv(bzip_path)
How to add a new graph?
Just create
an Issue corresponding to the “Issue template for adding a new graph”.
a Pull Request corresponding to the “Pull request template for adding a new graph”.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distribution
File details
Details for the file cfpq_data-4.0.3-py3-none-any.whl
.
File metadata
- Download URL: cfpq_data-4.0.3-py3-none-any.whl
- Upload date:
- Size: 40.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1b64c514938e2fee490727625d7607e90782f7436a466403ffacabceef5f3617 |
|
MD5 | 17848596d494ec341e42761263f1162c |
|
BLAKE2b-256 | 0a1fd87fca4d2744c37c4b788f0e3c4c2061a55568ec08e950059f9364f264d0 |