Skip to main content

Python package containing Graphs and Grammars for experimental analysis of Context-Free Path Querying algorithms

Project description

https://github.com/FormalLanguageConstrainedPathQuerying/CFPQ_Data/actions/workflows/tests.yml/badge.svg?branch=master https://codecov.io/gh/FormalLanguageConstrainedPathQuerying/CFPQ_Data/branch/master/graph/badge.svg?token=6IAZM6KZT7 https://img.shields.io/pypi/v/cfpq-data.svg https://img.shields.io/pypi/pyversions/cfpq-data.svg https://img.shields.io/badge/code%20style-black-000000.svg https://img.shields.io/badge/License-Apache%202.0-blue.svg

CFPQ_Data is a Python package for the creation, manipulation, and study of the structure, dynamics, and functions of complex Graphs and Grammars used for experimental analysis of Context-Free Path Querying algorithms.

Examples

Dataset content

>>> import cfpq_data
>>> cfpq_data.DATASET
['skos', 'wc', 'generations', 'travel', 'univ', 'atom', 'biomedical', 'bzip', 'foaf', 'people', 'pr', 'funding', 'ls', 'wine', 'pizza', 'gzip', 'core', 'pathways', 'enzyme', 'eclass', 'go_hierarchy', 'go', 'apache', 'init', 'mm', 'geospecies', 'ipc', 'lib', 'block', 'arch', 'crypto', 'security', 'sound', 'net', 'fs', 'drivers', 'postgre', 'kernel', 'taxonomy', 'taxonomy_hierarchy']

Load graph from Dataset

>>> bzip_path = cfpq_data.download("bzip")
>>> bzip = cfpq_data.graph_from_csv(bzip_path)

How to add a new graph?

Just create

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

cfpq_data-4.0.3-py3-none-any.whl (40.8 kB view details)

Uploaded Python 3

File details

Details for the file cfpq_data-4.0.3-py3-none-any.whl.

File metadata

  • Download URL: cfpq_data-4.0.3-py3-none-any.whl
  • Upload date:
  • Size: 40.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.8.10

File hashes

Hashes for cfpq_data-4.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 1b64c514938e2fee490727625d7607e90782f7436a466403ffacabceef5f3617
MD5 17848596d494ec341e42761263f1162c
BLAKE2b-256 0a1fd87fca4d2744c37c4b788f0e3c4c2061a55568ec08e950059f9364f264d0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page