Conjugate Gradient SENSE (CG-SENSE) MRI Reconstruction
Project description
CG-SENSE HOME
Step-by-step tutorial of Conjugate Gradient SENSE (CG-SENSE) reconstruction by Hung P. Do.
Notes
This tutorial was written by Hung Do based on the RRSG_Challenge_01 github repository.
-
Original python code:
-
Hung Do’s modifications:
-
cgsense2023 PyPI Package re-written: Details can be seen in the P4_HPD_cgsense section.
W.I.P Tasks
Contributions to the below tasks are highly appreciated!
-
Document the standardization of the raw h5-file, otherwise
read_data()
has to be modified every time a deviation in h5-file is encountered. -
Refactor, simplify, modularize the gridding reconstructions. Currently, it is difficult to understand, especially for new learner.
-
Add
dstore
flag in gradient descent or conjugate gradient optimization functions to store intermediate reconstruction in each iteration. -
Add theoretical descriptions on MRI, MRI recons, and gradient Descent, and gonjugate gradient algorithms.
-
etc.
How to Cite
APA style:
Do, H. (2024). CG-SENSE Tutorial version 0.0.3 (0.0.3). Zenodo. https://doi.org/10.5281/zenodo.10547817
IEEE style:
H. Do, “CG-SENSE Tutorial version 0.0.3”. Zenodo, Jan. 21, 2024. doi: 10.5281/zenodo.10547817.
pip install
The cgsense2023 package was uploaded to PyPI and can be easily installed using the below command.
pip install cgsense2023
How to use
Plot Module
from cgsense2023.plot import *
import numpy as np
# Sequential - full - spoke radial trajectory
traj_full = gen_radial_traj(golden=False, full_spoke=True)
show_trajectory(traj_full, golden=True, figsize=(10,8))
# golden - full - spoke radial trajectory
traj_full_golden = gen_radial_traj(golden=True, full_spoke=True)
show_trajectory(traj_full_golden, golden=True, figsize=(10,8))
Nim, Nx, Ny = 12, 128, 256
x1 = np.random.randn(Nim, Nx, Ny)
x2 = np.random.randn(1, Nx, Ny)
show_image_grid(x1)
Warning: number of images (12) is larger than number of panels (2x5)!
show_image_grid(x2)
Metrics Module
from cgsense2023.metrics import *
import numpy as np
# same dimensions
Nim, Nx, Ny = 11, 128, 256
x1 = np.random.randn(1, Nx, Ny)
x2 = np.random.randn(1, Nx, Ny)
print_metrics(x1, x2)
+---------+-----------+
| Metrics | Values |
+---------+-----------+
| MSE | 1.999e+00 |
| NMSE | 2.000e+00 |
| RMSE | 1.414e+00 |
| NRMSE | 1.414e+00 |
| PSNR | 14.981 |
| SSIM | 0.0092604 |
+---------+-----------+
Gridding Reconstruction
from cgsense2023.math import *
from cgsense2023.io import *
import cgsense2023 as cgs2003
from cgsense2023.mri import *
from cgsense2023.optimizer import *
import h5py
import numpy as np
import matplotlib.pyplot as plt
Data Paths
# path to the data file
fpath = '../testdata/rawdata_brain.h5'
# path to the reference results
rpath = '../testdata/CG_reco_inscale_True_denscor_True_reduction_1.h5'
with h5py.File(rpath, 'r') as rf:
print(list(rf.keys()))
ref_cg = np.squeeze(rf['CG_reco'][()][-1])
ref_grid = np.squeeze(rf['Coil_images'][()])
['CG_reco', 'Coil_images']
ref_cg.shape, ref_grid.shape
((300, 300), (12, 300, 300))
Setup Parameters
# one stop shop for all Parameters and Data
params = setup_params(fpath, R=1)
['Coils', 'InScale', 'rawdata', 'trajectory']
Setup MRI Operator
# Set up MRI operator
mrimodel = MriImagingModel(params)
mriop = MriOperator(data_par=params["Data"],optimizer_par=params["Optimizer"])
mriop.set_operator(mrimodel)
# Single Coil images after FFT
my_grid = mriop.operator.NuFFT.adjoint(params['Data']['rawdata_density_cor'])
my_grid.shape, ref_grid.shape
((12, 300, 300), (12, 300, 300))
# test gridding recon results
np.allclose(ref_grid, my_grid)
True
# test gridding recon results
np.array_equal(ref_grid, my_grid)
False
print_metrics(np.abs(ref_grid[0]), np.abs(my_grid[0]))
+---------+-----------+
| Metrics | Values |
+---------+-----------+
| MSE | 1.472e-24 |
| NMSE | 5.905e-15 |
| RMSE | 1.213e-12 |
| NRMSE | 7.684e-08 |
| PSNR | 154.87 |
| SSIM | 1.0 |
+---------+-----------+
show_image_grid(my_grid, figsize=(10,10), rows=3, cols=4)
show_image_grid(rss_rec(my_grid), figsize=(10,10))
Gradient Descent
guess = np.zeros((params['Data']['image_dim'],params['Data']['image_dim']))
SD_result, SD_residuals, SD_ref_res = steepest_descent(mriop, guess,
params['Data']['rawdata_density_cor'],
iters=50,
ref=ref_cg)
Residuum at iter 50 : 6.553379e-06
show_compared_images(np.abs(ref_cg), np.abs(SD_result), diff_fac=10,
labels=['Reference', 'Steepest Descent', 'diff'])
np.allclose(ref_cg, SD_result)
False
print_metrics(np.abs(ref_cg), np.abs(SD_result))
+---------+-----------+
| Metrics | Values |
+---------+-----------+
| MSE | 5.633e-14 |
| NMSE | 7.888e-05 |
| RMSE | 2.373e-07 |
| NRMSE | 8.882e-03 |
| PSNR | 55.242 |
| SSIM | 0.9988 |
+---------+-----------+
CG’s Semi-Convergence Behavior
CG_result, CG_residuals, CG_ref_res = conjugate_gradient(mriop, guess,
params['Data']['rawdata_density_cor'],
iters=50,
ref=ref_cg)
Residuum at iter 50 : 2.993229e-06
plt.plot(np.log10(SD_ref_res),'*--', label='SD reference_norms');
plt.plot(np.log10(SD_residuals),'*--', label='SD residual_norms');
plt.plot(np.log10(CG_ref_res),'*--', label='CG reference_norms');
plt.plot(np.log10(CG_residuals),'*--', label='CG residual_norms');
plt.grid();
plt.xlabel("# iteration")
plt.ylabel("residuals (log10)")
plt.legend();
Conjugate Gradient vs. REF
Based on the “semi-convergence” plot above, the optimal number of iterations for CG and SD are around 10 and 28, respectively.
CG_result_vs_REF, _, _ = conjugate_gradient(mriop, guess,
params['Data']['rawdata_density_cor'],
iters=10,
ref=ref_cg)
Residuum at iter 10 : 1.826174e-05
show_compared_images(np.abs(ref_cg), np.abs(CG_result_vs_REF), diff_fac=200000,
labels=['Reference', 'Conjugate Gradient', 'diff'])
np.allclose(ref_cg, CG_result_vs_REF)
True
print_metrics(np.abs(ref_cg), np.abs(CG_result_vs_REF))
+---------+-----------+
| Metrics | Values |
+---------+-----------+
| MSE | 1.196e-22 |
| NMSE | 1.675e-13 |
| RMSE | 1.094e-11 |
| NRMSE | 4.093e-07 |
| PSNR | 141.97 |
| SSIM | 1.0 |
+---------+-----------+
Developer install
If you want to develop cgsense2023
yourself, please use an editable
installation of cgsense2023
.
git clone https://github.com/hdocmsu/cgsense2023.git
pip install -e "cgsense2023[dev]"
You also need to use an editable installation of nbdev, fastcore, and execnb.
Happy Coding!!!
References
This template was created based on the below references. The list is not exhaustive so if you notice any missing references, please report an issue. I will promptly correct it.
-
RRSG_Challenge_01 github repository
-
fastMRI github repository
-
CG-SENSE revisited: Results from the first ISMRM reproducibility challenge
-
Prof. James V. Burke’s Lecture on “The Conjugate Gradient Algorithm”
-
Magnetic Resonance Image Reconstruction: Theory, Methods, and Applications, (2022)
Invitation to Contributions
If you would like to contribute to improve this repository please feel free to propose here.
License
MIT License as seen from the Original Repo’s License
MIT License
Copyright (c) 2020 ISMRM Reproducible Research Study Group
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file cgsense2023-0.0.6.tar.gz
.
File metadata
- Download URL: cgsense2023-0.0.6.tar.gz
- Upload date:
- Size: 22.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2a3f4b7db694c07992bf3e83bc503b978b98fe6133016604f47eb25871aaa192 |
|
MD5 | dcdeecd35832ef2f5c9086094d3d9704 |
|
BLAKE2b-256 | ea7f7f621517e228830c92297146a32f138e810109599cc0b7552c2f871091c2 |
File details
Details for the file cgsense2023-0.0.6-py3-none-any.whl
.
File metadata
- Download URL: cgsense2023-0.0.6-py3-none-any.whl
- Upload date:
- Size: 21.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e21db218769411d4f4f92b667279a6680409030b5a999c8e9b1fc0a7374424ad |
|
MD5 | 04c89ac47733ce5d8078748588817321 |
|
BLAKE2b-256 | f86e2b06804f5a44834515f535e4207f1a19fdb87fd2ae6fb4340dd9dd74aab1 |