Skip to main content

ChainerRL, a deep reinforcement learning library

Project description

ChainerRL

Build Status Coverage Status Documentation Status PyPI

ChainerRL is a deep reinforcement learning library that implements various state-of-the-art deep reinforcement algorithms in Python using Chainer, a flexible deep learning framework.

Breakout Humanoid Grasping Atlas

Installation

ChainerRL is tested with 3.5.1+. For other requirements, see requirements.txt.

ChainerRL can be installed via PyPI:

pip install chainerrl

It can also be installed from the source code:

python setup.py install

Refer to Installation for more information on installation.

Getting started

You can try ChainerRL Quickstart Guide first, or check the examples ready for Atari 2600 and Open AI Gym.

For more information, you can refer to ChainerRL's documentation.

Algorithms

Algorithm Discrete Action Continous Action Recurrent Model Batch Training CPU Async Training
DQN (including DoubleDQN etc.) ✓ (NAF) x
Categorical DQN x x
Rainbow x x
IQN x x
DDPG x x
A3C ✓ (A2C)
ACER x
NSQ (N-step Q-learning) ✓ (NAF) x
PCL (Path Consistency Learning) x
PPO x
TRPO x
TD3 x x x
SAC x x x

Following algorithms have been implemented in ChainerRL:

Following useful techniques have been also implemented in ChainerRL:

Visualization

ChainerRL has a set of accompanying visualization tools in order to aid developers' ability to understand and debug their RL agents. With this visualization tool, the behavior of ChainerRL agents can be easily inspected from a browser UI.

Environments

Environments that support the subset of OpenAI Gym's interface (reset and step methods) can be used.

Contributing

Any kind of contribution to ChainerRL would be highly appreciated! If you are interested in contributing to ChainerRL, please read CONTRIBUTING.md.

License

MIT License.

Citations

To cite ChainerRL in publications:

@InProceedings{fujita2019chainerrl,
  author = {Fujita, Yasuhiro and Kataoka, Toshiki and Nagarajan, Prabhat and Ishikawa, Takahiro},
  title = {ChainerRL: A Deep Reinforcement Learning Library},
  booktitle = {Workshop on Deep Reinforcement Learning at the 33rd Conference on Neural Information Processing Systems},
  location = {Vancouver, Canada},
  month = {December},
  year = {2019}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

chainerrl-0.8.0.tar.gz (121.0 kB view details)

Uploaded Source

File details

Details for the file chainerrl-0.8.0.tar.gz.

File metadata

  • Download URL: chainerrl-0.8.0.tar.gz
  • Upload date:
  • Size: 121.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/3.7.2

File hashes

Hashes for chainerrl-0.8.0.tar.gz
Algorithm Hash digest
SHA256 ee153b891360f35f88ab19017b4b5cad66f2df1cbf77dfb3cd66e4fd63a677b0
MD5 3d39d5f94bd5b41006d1b182788f3207
BLAKE2b-256 33219a489b1fe73d074df76f2c4bde970e8c0762b675fd0819e4ae9039b9252a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page