Skip to main content

Python module to get price and other data from the decentralized chainlink community resources

Project description

chainlink_feeds

PyPI version Average time to resolve an issue Percentage of issues still open Actions Status

A way to pull data from the Chainlink Price Feeds for analytics, algorithmic trading models, or else.

This repo uses either an RPC_URL or the Chainlink Subgraph

Quickstart

Install:

pip install chainlink_feeds

Using the Chainlink subgraph

When you don't specify an RPC_URL, you automatically use the Chainlink subgraph.

from chainlink_feeds.chainlink_feeds import ChainlinkFeeds

cf = ChainlinkFeeds()
print(cf.get_latest_round_data(pair='ETH_USD'))

Result:

[{'assetPair': 'ETH/USD', 'blockHash': '0x141ad3c7468f4263d8b1b98a73f804b40ef1eb3a966bc2151646a08ba9872a58', 'blockNumber': '10887253', 'id': '0xf79d6afbb6da890132f9d7c355e3015f15f3406f/10887253/8', 'price': '38281000000', 'timestamp': '1600446952', 'transactionHash': '0x44e321f415e2ae236e3fbfb0df024825ff95331dca89dd25401303f0433fdb9d'}]
You can also pass:
cf.get_historical_price()
cf.get_price_feeds()
cf.get_prices()
cf.get_hourly_candle()
cf.get_daily_candle()
cf.get_weekly_candle()

This will get you all the data the subgraph can return. If you'd like to get pandas, you can just change the output format of the object.

cf = ChainlinkFeeds(output_format = 'pandas')
data = cf.get_daily_candle(pair='eth/usd')
data['closePrice'] = data['closePrice'].astype(float)
data.index = pd.to_datetime(data.index, unit='s')
data['closePrice'].plot()

resulting in:

              assetPair averagePrice   closePrice    highPrice     lowPrice  medianPrice    openPrice
openTimestamp
1600387200      ETH/USD  38615230654  38281000000  39190413319  38110269640  38933749501  38933749501
1600300800      ETH/USD  37891000000  39020000000  39344406296  36503000000  36503000000  36503000000
1600214400      ETH/USD  36564000000  36555000000  37276742411  35743000000  36428000000  36428000000
1600128000      ETH/USD  36983000000  36385393883  38069814258  36319641931  37744000000  37744000000
1600041600      ETH/USD  36914207489  37675318623  38270000000  35817000000  36634540717  36634540717
...                 ...          ...          ...          ...          ...          ...          ...
1586649600      ETH/USD  16022887240  15994875000  16467921975  15597479550  15864014512  15864014512
1586563200      ETH/USD  15838000000  15738831997  16108625000  15543870740  15813418305  15813418305
1586476800      ETH/USD  15868349654  15729441133  16995863008  15328500000  16994301012  16994301012
1586390400      ETH/USD  16990152130  17075750000  17151190079  16863999644  16943041228  16943041228
1586304000      ETH/USD  17277450182  17276241069  17277853301  17276241069  17277853301  17277853301

You can then run some analytics on it:

from chainlink_feeds.chainlink_feeds import ChainlinkFeeds
import matplotlib.pyplot as plt
import pandas as pd

cf = ChainlinkFeeds(output_format = 'pandas')
data = cf.get_daily_candle(pair='eth/usd')
data['closePrice'] = data['closePrice'].astype(float)
data.index = pd.to_datetime(data.index, unit='s')
data['closePrice'].plot()

Which results in: Crypto Data Chart

You can also run your own GraphQL Query with:

cf.graphql_query("{enter_query_here}")

You can check out some methods on the Chainlink subgraph site. Crypto Data Chart

Using the RPC_URL

Otherwise you can specify an RPC_URL and query the blockchain yourself.

from chainlink_feeds.chainlink_feeds import ChainlinkFeeds

cf = ChainlinkFeeds(rpc_url = "https://www.infura.com/asdfasdfasdfas)

And query the blockchain directly. You do need to know the address and the ABI of the pair. For reference, you can check the config folder in this repo. You can also load_config with your own config with addresses or ABIs. A lot of them are prepopulated in this repo, but be sure to check if you're using outdated addresses.

print(cf.get_latest_round_data(network='KOVAN', pair='ETH_USD'))

Resulting in:

{'round_id': 18446744073709562669, 'price': 382.66, 'started_at': '2020-09-18 13:30:12', 'time_stamp': '2020-09-18 13:30:12', 'answered_in_round': 18446744073709562669}

You can use the methods directly from the Chainlink Price Feeds Documentation.

TODOs:

  • Add more query support
  • Make docs other than this readme
  • add more tests
  • figure out how to go back more than 1000 results

Contact:

Be sure to check out the Chainlink Developers Discord as well!

Consider starring this repo if you enjoyed it :)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

chainlink_feeds-0.2.9.tar.gz (8.8 kB view details)

Uploaded Source

Built Distribution

chainlink_feeds-0.2.9-py3-none-any.whl (9.3 kB view details)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page