Skip to main content

Easier Configuration

Project description

CHANfiG

Read this in English: English, Chinese

在其他语言中阅读本文:汉语英语

Document site

Introduction

CHANfiG aims to make your configuration easier.

There are tons of configurable parameters in training a Machine Learning model. To configure all these parameters, researchers usually need to write gigantic config files, sometimes even thousands of lines. Most of the configs are just replicates of the default arguments of certain functions, resulting in many unnecessary declarations. It is also very hard to alter the configurations. One needs to navigate and open the right configuration file, make changes, save and exit. These had wasted an uncountable[^uncountable] amount of precious time and is no doubt a crime. Using argparse could relieve the burdens to some extent, however, it takes a lot of work to make it compatible with existing config files, and its lack of nesting limits its potential. CHANfiG would like to make a change.

You just run your experiment with arguments, and leave everything else to CHANfiG.

CHANfiG is highly inspired by YACS. Different from the paradigm of YACS( your code + a YACS config for experiment E (+ external dependencies + hardware + other nuisance terms ...) = reproducible experiment E), The paradigm of CHANfiG is:

your code + command line arguments (+ optional CHANfiG config + external dependencies + hardware + other nuisance terms ...) = reproducible experiment E (+ optional CHANfiG config for experiment E)

Features

CHANfiG features a fully funcional OrderedDict and NestedDict with integrated IO operations (load, dump, jsons, yamls, etc.), cooperation ability (difference, intersection, update) and ease to use APIs (all_items, all_keys, all_values).

With ConfigParser, you can easily parse command line arguments into a Config object.

Have one value for multiple names at multiple places? We got you covered.

Just wrap the value with Variable, and one alteration will be reflected everywhere.

Usage

CHANfiG has great backward compatibility with previous configs.

No matter your old config is json or yaml, you could directly read from them.

And if you are using yacs, just replace CfgNode with Config and enjoy all the additional benefits that CHANfiG provides.

from chanfig import Config


class Model:
    def __init__(self, encoder, dropout=0.1, activation='ReLU'):
        self.encoder = Encoder(**encoder)
        self.dropout = Dropout(dropout)
        self.activation = getattr(Activation, activation)

def main(config):
    model = Model(**config.model)
    optimizer = Optimizer(**config.optimizer)
    scheduler = Scheduler(**config.scheduler)
    dataset = Dataset(**config.dataset)
    dataloader = Dataloader(**config.dataloader)


class TestConfig(Config):
    def __init__(self):
        super().__init__()
        dropout = Variable(0.1)
        self.data.batch_size = 64
        self.model.encoder.num_layers = 6
        self.model.decoder.num_layers = 6
        self.model.dropout = dropout
        self.model.encoder.dropout = dropout
        self.model.decoder.dropout = dropout
        self.activation = "GELU"
        self.optim.lr = 1e-3


if __name__ == '__main__':
    # config = Config.load('config.yaml')  # in case you want to read from a yaml
    # config = Config.load('config.json')  # in case you want to read from a json
    # existing_configs = {'data.batch_size': 64, 'model.encoder.num_layers': 8}
    # config = Config(**existing_configs)  # in case you have some config in dict to load
    config = TestConfig()
    config = config.parse()
    # config.update('dataset.yaml')  # in case you want to merge a yaml
    # config.update('dataset.json')  # in case you want to merge a json
    # note that the value of merge will surpass current values
    config.model.decoder.num_layers = 8
    config.freeze()
    print(config)
    # main(config)
    # config.yaml('config.yaml')  # in case you want to save a yaml
    # config.json('config.json')  # in case you want to save a json

All you need to do is just run a line:

python main.py --model.encoder.num_layers 8 --model.dropout=0.2

You could also load a default configure file and make changes based on it:

Note, you must specify config.parse(default_config='config') to correctly load the default config.

python main.py --config meow.yaml --model.encoder.num_layers 8 --model.dropout=0.2

If you have made it dump current configurations, this should be in the written file:

data:
  batch_size: 64
model:
  encoder:
    num_layers: 8
    dropout: 0.2
  decoder:
    num_layers: 8
    dropout: 0.2
  dropout: 0.2
  activation: GELU
{
  "data": {
    "batch_size": 64
  },
  "model": {
    "encoder": {
      "num_layers": 8,
      "dropout": 0.2
    },
    "decoder": {
      "num_layers": 8,
      "dropout": 0.2
    },
  "dropout": 0.2,
  "activation": "GELU",
  },
}

Define the default arguments in function, put alterations in CLI, and leave the rest to CHANfiG.

Installation

Install the most recent stable version on pypi:

pip install chanfig

Install the latest version from source:

pip install git+https://github.com/ZhiyuanChen/CHANfiG

It works the way it should have worked.

[^uncountable]: fun fact: time is always uncountable.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

chanfig-0.0.41.tar.gz (15.1 kB view details)

Uploaded Source

Built Distribution

chanfig-0.0.41-py3-none-any.whl (39.1 kB view details)

Uploaded Python 3

File details

Details for the file chanfig-0.0.41.tar.gz.

File metadata

  • Download URL: chanfig-0.0.41.tar.gz
  • Upload date:
  • Size: 15.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for chanfig-0.0.41.tar.gz
Algorithm Hash digest
SHA256 5f25dbf61887ac5d873db5398d45f414448775956e4149cd36a658bfaf5f312c
MD5 9f34e6680afca7a1d1edb13c0eff1d21
BLAKE2b-256 b9a8832ffd0a944b97ba4bdc31946f70a87d009e70ffd1bf191c0c30fa65b803

See more details on using hashes here.

File details

Details for the file chanfig-0.0.41-py3-none-any.whl.

File metadata

  • Download URL: chanfig-0.0.41-py3-none-any.whl
  • Upload date:
  • Size: 39.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for chanfig-0.0.41-py3-none-any.whl
Algorithm Hash digest
SHA256 793e22ab6a25758cfb91d1f5a3e4e3de4394ef4991a3a75d9fa88365c68a66e3
MD5 c702d5f544e11b93aef5bfd1002b522a
BLAKE2b-256 8d653a9b16a50a47f164eff8ada4f7cb616dcffc7ef8f5e8a0182ec430706a70

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page