Change detection models with pre-trained backbones. Inspired by segmentation_models.pytorch.
Project description
Change Detection Models
Python library with Neural Networks for Change Detection based on PyTorch.
This project is inspired by segmentation_models.pytorch and built based on it. 😄
🌱 How to use
Please refer to local_test.py temporarily.
🔭 Models
Architectures
-
Unet [paper]
-
Unet++ [paper]
-
MAnet [paper]
-
Linknet [paper]
-
FPN [paper]
-
PSPNet [paper]
-
PAN [paper]
-
DeepLabV3 [paper]
-
DeepLabV3+ [paper]
-
UPerNet [paper]
-
STANet [paper]
Encoders
The following is a list of supported encoders in the CDP. Select the appropriate family of encoders and click to expand the table and select a specific encoder and its pre-trained weights (encoder_name
and encoder_weights
parameters).
ResNet
Encoder | Weights | Params, M |
---|---|---|
resnet18 | imagenet / ssl / swsl | 11M |
resnet34 | imagenet | 21M |
resnet50 | imagenet / ssl / swsl | 23M |
resnet101 | imagenet | 42M |
resnet152 | imagenet | 58M |
ResNeXt
Encoder | Weights | Params, M |
---|---|---|
resnext50_32x4d | imagenet / ssl / swsl | 22M |
resnext101_32x4d | ssl / swsl | 42M |
resnext101_32x8d | imagenet / instagram / ssl / swsl | 86M |
resnext101_32x16d | instagram / ssl / swsl | 191M |
resnext101_32x32d | 466M | |
resnext101_32x48d | 826M |
ResNeSt
Encoder | Weights | Params, M |
---|---|---|
timm-resnest14d | imagenet | 8M |
timm-resnest26d | imagenet | 15M |
timm-resnest50d | imagenet | 25M |
timm-resnest101e | imagenet | 46M |
timm-resnest200e | imagenet | 68M |
timm-resnest269e | imagenet | 108M |
timm-resnest50d_4s2x40d | imagenet | 28M |
timm-resnest50d_1s4x24d | imagenet | 23M |
Res2Ne(X)t
Encoder | Weights | Params, M |
---|---|---|
timm-res2net50_26w_4s | imagenet | 23M |
timm-res2net101_26w_4s | imagenet | 43M |
timm-res2net50_26w_6s | imagenet | 35M |
timm-res2net50_26w_8s | imagenet | 46M |
timm-res2net50_48w_2s | imagenet | 23M |
timm-res2net50_14w_8s | imagenet | 23M |
timm-res2next50 | imagenet | 22M |
RegNet(x/y)
Encoder | Weights | Params, M |
---|---|---|
timm-regnetx_002 | imagenet | 2M |
timm-regnetx_004 | imagenet | 4M |
timm-regnetx_006 | imagenet | 5M |
timm-regnetx_008 | imagenet | 6M |
timm-regnetx_016 | imagenet | 8M |
timm-regnetx_032 | imagenet | 14M |
timm-regnetx_040 | imagenet | 20M |
timm-regnetx_064 | imagenet | 24M |
timm-regnetx_080 | imagenet | 37M |
timm-regnetx_120 | imagenet | 43M |
timm-regnetx_160 | imagenet | 52M |
timm-regnetx_320 | imagenet | 105M |
timm-regnety_002 | imagenet | 2M |
timm-regnety_004 | imagenet | 3M |
timm-regnety_006 | imagenet | 5M |
timm-regnety_008 | imagenet | 5M |
timm-regnety_016 | imagenet | 10M |
timm-regnety_032 | imagenet | 17M |
timm-regnety_040 | imagenet | 19M |
timm-regnety_064 | imagenet | 29M |
timm-regnety_080 | imagenet | 37M |
timm-regnety_120 | imagenet | 49M |
timm-regnety_160 | imagenet | 80M |
timm-regnety_320 | imagenet | 141M |
GERNet
Encoder | Weights | Params, M |
---|---|---|
timm-gernet_s | imagenet | 6M |
timm-gernet_m | imagenet | 18M |
timm-gernet_l | imagenet | 28M |
SE-Net
Encoder | Weights | Params, M |
---|---|---|
senet154 | imagenet | 113M |
se_resnet50 | imagenet | 26M |
se_resnet101 | imagenet | 47M |
se_resnet152 | imagenet | 64M |
se_resnext50_32x4d | imagenet | 25M |
se_resnext101_32x4d | imagenet | 46M |
SK-ResNe(X)t
Encoder | Weights | Params, M |
---|---|---|
timm-skresnet18 | imagenet | 11M |
timm-skresnet34 | imagenet | 21M |
timm-skresnext50_32x4d | imagenet | 25M |
DenseNet
Encoder | Weights | Params, M |
---|---|---|
densenet121 | imagenet | 6M |
densenet169 | imagenet | 12M |
densenet201 | imagenet | 18M |
densenet161 | imagenet | 26M |
Inception
Encoder | Weights | Params, M |
---|---|---|
inceptionresnetv2 | imagenet / imagenet+background | 54M |
inceptionv4 | imagenet / imagenet+background | 41M |
xception | imagenet | 22M |
EfficientNet
Encoder | Weights | Params, M |
---|---|---|
efficientnet-b0 | imagenet | 4M |
efficientnet-b1 | imagenet | 6M |
efficientnet-b2 | imagenet | 7M |
efficientnet-b3 | imagenet | 10M |
efficientnet-b4 | imagenet | 17M |
efficientnet-b5 | imagenet | 28M |
efficientnet-b6 | imagenet | 40M |
efficientnet-b7 | imagenet | 63M |
timm-efficientnet-b0 | imagenet / advprop / noisy-student | 4M |
timm-efficientnet-b1 | imagenet / advprop / noisy-student | 6M |
timm-efficientnet-b2 | imagenet / advprop / noisy-student | 7M |
timm-efficientnet-b3 | imagenet / advprop / noisy-student | 10M |
timm-efficientnet-b4 | imagenet / advprop / noisy-student | 17M |
timm-efficientnet-b5 | imagenet / advprop / noisy-student | 28M |
timm-efficientnet-b6 | imagenet / advprop / noisy-student | 40M |
timm-efficientnet-b7 | imagenet / advprop / noisy-student | 63M |
timm-efficientnet-b8 | imagenet / advprop | 84M |
timm-efficientnet-l2 | noisy-student | 474M |
timm-efficientnet-lite0 | imagenet | 4M |
timm-efficientnet-lite1 | imagenet | 5M |
timm-efficientnet-lite2 | imagenet | 6M |
timm-efficientnet-lite3 | imagenet | 8M |
timm-efficientnet-lite4 | imagenet | 13M |
MobileNet
Encoder | Weights | Params, M |
---|---|---|
mobilenet_v2 | imagenet | 2M |
timm-mobilenetv3_large_075 | imagenet | 1.78M |
timm-mobilenetv3_large_100 | imagenet | 2.97M |
timm-mobilenetv3_large_minimal_100 | imagenet | 1.41M |
timm-mobilenetv3_small_075 | imagenet | 0.57M |
timm-mobilenetv3_small_100 | imagenet | 0.93M |
timm-mobilenetv3_small_minimal_100 | imagenet | 0.43M |
DPN
Encoder | Weights | Params, M |
---|---|---|
dpn68 | imagenet | 11M |
dpn68b | imagenet+5k | 11M |
dpn92 | imagenet+5k | 34M |
dpn98 | imagenet | 58M |
dpn107 | imagenet+5k | 84M |
dpn131 | imagenet | 76M |
VGG
Encoder | Weights | Params, M |
---|---|---|
vgg11 | imagenet | 9M |
vgg11_bn | imagenet | 9M |
vgg13 | imagenet | 9M |
vgg13_bn | imagenet | 9M |
vgg16 | imagenet | 14M |
vgg16_bn | imagenet | 14M |
vgg19 | imagenet | 20M |
vgg19_bn | imagenet | 20M |
:truck: Dataset
- LEVIR-CD
- SVCD [google drive | baidu disk (x8gi)]
- ...
🏆 Competitions won with the library
change_detection.pytorch
has competitiveness and potential in the change detection competitions.
Here you can find competitions, names of the winners and links to their solutions.
:page_with_curl: Citing
@misc{likyoocdp:2021,
Author = {Kaiyu Li, Fulin Sun, Xudong Liu},
Title = {Change Detection Pytorch},
Year = {2021},
Publisher = {GitHub},
Journal = {GitHub repository},
Howpublished = {\url{https://github.com/likyoo/change_detection.pytorch}}
}
:books: Reference
- qubvel/segmentation_models.pytorch
- albumentations-team/albumentations
- open-mmlab/mmsegmentation
- wenhwu/awesome-remote-sensing-change-detection
:mailbox: Contact
⚡⚡⚡ I am trying to build this project, if you are interested, don't hesitate to join us!
👯👯👯 Contact me at likyoo@sdust.edu.cn or pull a request directly or join our WeChat group.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distributions
File details
Details for the file change_detection_pytorch-0.1.4.tar.gz
.
File metadata
- Download URL: change_detection_pytorch-0.1.4.tar.gz
- Upload date:
- Size: 86.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.7.1 importlib_metadata/4.8.3 pkginfo/1.8.2 requests/2.27.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.6.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 25b1dd462d5e477bb5d3dfc424b499b365d08b1d906d1d3bbab36be506edb69b |
|
MD5 | 3369b17c2b29101e4b78e013a78eda70 |
|
BLAKE2b-256 | 7491f5089e521c29cae8f536a897457aa47692c1865d0a783d812466996ed2a2 |
File details
Details for the file change_detection_pytorch-0.1.4-py3.7.egg
.
File metadata
- Download URL: change_detection_pytorch-0.1.4-py3.7.egg
- Upload date:
- Size: 322.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.7.1 importlib_metadata/4.8.3 pkginfo/1.8.2 requests/2.27.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.6.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 248f5800d699a30ced38bb7a9eeaffdbb48970daf4139a3b24b7dc2708e5a7c5 |
|
MD5 | e1492c78f65be1032abf79389dce6efb |
|
BLAKE2b-256 | 19c3a400bb7c6261ff06226854e87ae7fc129f364d45ac7f82735c6989a0f882 |
File details
Details for the file change_detection_pytorch-0.1.4-py3-none-any.whl
.
File metadata
- Download URL: change_detection_pytorch-0.1.4-py3-none-any.whl
- Upload date:
- Size: 137.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.7.1 importlib_metadata/4.8.3 pkginfo/1.8.2 requests/2.27.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.6.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4d065691b480a931f45c5f2dc6eda60df27d826dac9fb362d6123cf3e3d72e4e |
|
MD5 | a7c4bae3340c6a89addc10c0a2e9c0c5 |
|
BLAKE2b-256 | aa1639b93e49a0bb5fe055d7ed4c70a098c92407fdfbcd9331d687d81a762d8a |