Skip to main content

Valkey-backed ASGI channel layer implementation

Project description

https://img.shields.io/pypi/v/channels_redis.svg

Provides Django Channels channel layers that use Valkey as a backing store.

this is a fork of the wonderful channels-redis project.

There are two available implementations:

  • ValkeyChannelLayer is the original layer, and implements channel and group handling itself.

  • ValkeyPubSubChannelLayer is newer and leverages Valkey Pub/Sub for message dispatch. This layer is currently at Beta status, meaning it may be subject to breaking changes whilst it matures.

Both layers support a single-server and sharded configurations.

channels_valkey is tested against Python 3.9 to 3.13, valkey-py versions 6.x, and the development branch, and Channels versions 3, 4 and the development branch there.

Installation

pip install channels-valkey

Usage

Set up the channel layer in your Django settings file like so:

CHANNEL_LAYERS = {
    "default": {
        "BACKEND": "channels_valkey.core.ValkeyChannelLayer",
        "CONFIG": {
            "hosts": [("localhost", 6379)],
        },
    },
}

Or, you can use the alternate implementation which uses Valkey Pub/Sub:

CHANNEL_LAYERS = {
    "default": {
        "BACKEND": "channels_valkey.pubsub.ValkeyPubSubChannelLayer",
        "CONFIG": {
            "hosts": [("localhost", 6379)],
        },
    },
}

Possible options for CONFIG are listed below.

hosts

The server(s) to connect to, as either URIs, (host, port) tuples, or dicts conforming to valkey Connection. Defaults to valkey://localhost:6379. Pass multiple hosts to enable sharding, but note that changing the host list will lose some sharded data.

SSL connections that are self-signed (ex: Heroku):

"default": {
    "BACKEND": "channels_valkey.pubsub.ValkeyPubSubChannelLayer",
    "CONFIG": {
        "hosts":[{
            "address": "valkeys://user@host:port",  # "VALKEY_TLS_URL"
            "ssl_cert_reqs": None,
        }]
    }
}

Sentinel connections require dicts conforming to:

{
    "sentinels": [
        ("localhost", 26379),
    ],
    "master_name": SENTINEL_MASTER_SET,
    **kwargs
}

note the additional master_name key specifying the Sentinel master set and any additional connection kwargs can also be passed. Plain Valkey and Sentinel connections can be mixed and matched if sharding.

If your server is listening on a UNIX domain socket, you can also use that to connect: ["unix:///path/to/valkey.sock"]. This should be slightly faster than a loopback TCP connection.

prefix

Prefix to add to all Valkey keys. Defaults to asgi. If you’re running two or more entirely separate channel layers through the same Valkey instance, make sure they have different prefixes. All servers talking to the same layer should have the same prefix, though.

expiry

Message expiry in seconds. Defaults to 60. You generally shouldn’t need to change this, but you may want to turn it down if you have peaky traffic you wish to drop, or up if you have peaky traffic you want to backlog until you get to it.

group_expiry

Group expiry in seconds. Defaults to 86400. Channels will be removed from the group after this amount of time; it’s recommended you reduce it for a healthier system that encourages disconnections. This value should not be lower than the relevant timeouts in the interface server (e.g. the --websocket_timeout to daphne).

capacity

Default channel capacity. Defaults to 100. Once a channel is at capacity, it will refuse more messages. How this affects different parts of the system varies; a HTTP server will refuse connections, for example, while Django sending a response will just wait until there’s space.

channel_capacity

Per-channel capacity configuration. This lets you tweak the channel capacity based on the channel name, and supports both globbing and regular expressions.

It should be a dict mapping channel name pattern to desired capacity; if the dict key is a string, it’s interpreted as a glob, while if it’s a compiled re object, it’s treated as a regular expression.

This example sets http.request to 200, all http.response! channels to 10, and all websocket.send! channels to 20:

CHANNEL_LAYERS = {
    "default": {
        "BACKEND": "channels_valkey.core.ValkeyChannelLayer",
        "CONFIG": {
            "hosts": [("localhost", 6379)],
            "channel_capacity": {
                "http.request": 200,
                "http.response!*": 10,
                re.compile(r"^websocket.send\!.+"): 20,
            },
        },
    },
}

If you want to enforce a matching order, use an OrderedDict as the argument; channels will then be matched in the order the dict provides them.

symmetric_encryption_keys

Pass this to enable the optional symmetric encryption mode of the backend. To use it, make sure you have the cryptography package installed, or specify the cryptography extra when you install channels-valkey:

pip install channels-valkey[cryptography]

symmetric_encryption_keys should be a list of strings, with each string being an encryption key. The first key is always used for encryption; all are considered for decryption, so you can rotate keys without downtime - just add a new key at the start and move the old one down, then remove the old one after the message expiry time has passed.

Data is encrypted both on the wire and at rest in Valkey, though we advise you also route your Valkey connections over TLS for higher security; the Valkey protocol is still unencrypted, and the channel and group key names could potentially contain metadata patterns of use to attackers.

Keys should have at least 32 bytes of entropy - they are passed through the SHA256 hash function before being used as an encryption key. Any string will work, but the shorter the string, the easier the encryption is to break.

If you’re using Django, you may also wish to set this to your site’s SECRET_KEY setting via the CHANNEL_LAYERS setting:

CHANNEL_LAYERS = {
    "default": {
        "BACKEND": "channels_valkey.core.ValkeyChannelLayer",
        "CONFIG": {
            "hosts": ["valkey://:password@127.0.0.1:6379/0"],
            "symmetric_encryption_keys": [SECRET_KEY],
        },
    },
}

on_disconnect / on_reconnect

The PubSub layer, which maintains long-running connections to Valkey, can drop messages in the event of a network partition. To handle such situations the PubSub layer accepts optional arguments which will notify consumers of Valkey disconnect/reconnect events. A common use-case is for consumers to ensure that they perform a full state re-sync to ensure that no messages have been missed.

CHANNEL_LAYERS = {
    "default": {
        "BACKEND": "channels_valkey.pubsub.ValkeyPubSubChannelLayer",
        "CONFIG": {
            "hosts": [...],
            "on_disconnect": "valkey.disconnect",
        },
    },
}

And then in your channels consumer, you can implement the handler:

async def valkey_disconnect(self, *args):
    # Handle disconnect

Dependencies

Valkey server >= 7.2.7 is required for channels-valkey. Python 3.9 or higher is required.

Used commands

Your Valkey server must support the following commands:

  • ValkeyChannelLayer uses BZPOPMIN, DEL, EVAL, EXPIRE, KEYS, PIPELINE, ZADD, ZCOUNT, ZPOPMIN, ZRANGE, ZREM, ZREMRANGEBYSCORE

  • ValkeyPubSubChannelLayer uses PUBLISH, SUBSCRIBE, UNSUBSCRIBE

Local Development

You can run the necessary Valkey instances in Docker with the following commands:

docker network create valkey-network
docker run --rm \
    --network=valkey-network \
    --name=valkey-server \
    -p 6379:6379 \
    valkey/valkey
docker run --rm \
    --network valkey-network \
    --name valkey-sentinel \
    -e VALKEY_MASTER_HOST=valkey-server \
    -e VALKEY_SENTINEL_QUORUM=1 \
    -p 26379:26379 \
    bitnami/valkey-sentinel

Contributing

this project is a fork of channels_redis project, it’s mostly the same setup, only replace redis with valkey.

Please refer to the main Channels contributing docs. That also contains advice on how to set up the development environment and run the tests.

Maintenance

To report bugs or request new features, please open a new GitHub issue.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

channels_valkey-0.1.0.tar.gz (27.7 kB view details)

Uploaded Source

Built Distribution

channels_valkey-0.1.0-py3-none-any.whl (18.2 kB view details)

Uploaded Python 3

File details

Details for the file channels_valkey-0.1.0.tar.gz.

File metadata

  • Download URL: channels_valkey-0.1.0.tar.gz
  • Upload date:
  • Size: 27.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: uv/0.4.20

File hashes

Hashes for channels_valkey-0.1.0.tar.gz
Algorithm Hash digest
SHA256 95c764466c55e0bff6eb0fc4b7b4b59d6c420e3bc87678d16d4ec2991edb6948
MD5 62c69f12765d505607d08680903c9321
BLAKE2b-256 0bd03c0c7a3c2ec265ea7559344658034c8116a654b0ea4ee34c1dc8ad166df6

See more details on using hashes here.

File details

Details for the file channels_valkey-0.1.0-py3-none-any.whl.

File metadata

File hashes

Hashes for channels_valkey-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 75d32deaeddd7cd39276b6e2b5dfe60a5f24ec7ca4bc91cccb7a2da21e50c145
MD5 0b3231e8d13a3e38a375dd7365439bd9
BLAKE2b-256 b6e391518171025714d6dd43d1076b5a0af7fea59829476507dc9e590cf0efc9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page