Skip to main content

A client to create experiments in ChaosMesh

Project description

Chaos Mesh Client

Introduction

Chaos Mesh is an open source cloud-native Chaos Engineering platform that allows you to simulate various faults and orchestrate fault scenarios in your kubernetes cluster. This client is written in Python and provides a single point of entry to create and manage experiments in Chaos Mesh.

Getting Started

To start using Chaos Mesh, please follow the installation steps in the documentation.

To create a Chaos Mesh client, you can use the following code:

from chaosmesh.client import Client, Experiment
from chaosmesh.k8s.selector import Selector

# creating the ChaosMesh client
client = Client(version="v1alpha1")

# target pods selector; by labelSector or by pods in specified namespaces
selector = Selector(labelSelectors={"app": "filebeat"}, pods=None, namespaces=None)

Experiment Types

Chaos Mesh supports various types of experiments, including Pod faults, stress tests, JVM faults, and Host faults.

Pod Faults

  • Pod failure
  • Pod kill
  • Container kill

Stress Tests

  • CPU
  • Memory

JVM Faults

  • GC
  • Exception

Host Faults

  • CPU
  • Memory

Network Attach

  • Partition
  • Bandwidth

Experiment Examples

Here are some examples of how you can create experiments in Chaos Mesh:

Pod Failure Experiment

# name of the experiment
exp_name = str(uuid.uuid4())

# starting up the pod failure experiment
client.start_experiment(Experiment.POD_FAILURE, namespace="default", name=exp_name, selector=selector)

Pod Kill Experiment

exp_name = str(uuid.uuid4())

# starting up the pod kill experiment
client.start_experiment(Experiment.POD_KILL, namespace="default", name=exp_name, selector=selector)

Container Kill Experiment

exp_name = str(uuid.uuid4())

# starting up the pod kill experiment
client.start_experiment(Experiment.CONTAINER_KILL, namespace="default", name=exp_name, selector=selector, container_names=['main'])

CPU Stress Test Experiment

exp_name = str(uuid.uuid4())

# starting up the pod kill experiment
client.start_experiment(Experiment.POD_STRESS_CPU, namespace="default", name=exp_name, selector=selector, container_names=['main'])

Memory Stress Test Experiment

exp_name = str(uuid.uuid4())

# starting up the pod kill experiment
client.start_experiment(Experiment.POD_STRESS_MEMORY, namespace="default", name=exp_name, selector=selector, container_names=['main'])

GC Experiment

# name of the experiment
exp_name = str(uuid.uuid4())

client.start_experiment(Experiment.GC, namespace="default", name=exp_name, selector=selector, port=8080)

Exception Experiment

exp_name = str(uuid.uuid4())

client.start_experiment(Experiment.RAISE_EXCEPTION, namespace="default",
                        name=exp_name, selector=select

Host CPU stress

exp_name = str(uuid.uuid4())

# starting up the host cpu stress experiment
client.start_experiment(Experiment.HOST_STRESS_CPU, namespace="default", name=exp_name,
                        address=["10.225.66.224", "10.225.67.213", "10.225.66.231", "10.225.66.138", "10.225.66.192", "10.225.67.52", "10.225.67.103"],
                        load=1000)

Host Memory stress

exp_name = str(uuid.uuid4())

# starting up the host memory stress experiment
client.start_experiment(Experiment.HOST_STRESS_MEMORY, namespace="default", name=exp_name,
                        address=["10.225.66.224", "10.225.67.213", "10.225.66.231", "10.225.66.138", "10.225.66.192", "10.225.67.52", "10.225.67.103"],
                        size="30GB")

Network Partition

exp_name = "network-partition-" + random.randint(0, 1000000).__str__()

# starting up the network partition experiment
client.start_experiment(Experiment.NETWORK_PARTITION, namespace="default", name=exp_name, selector=selector, external_targets=["target"], direction="both")

Network Bandwidth

exp_name = "network-bandwidth-" + random.randint(0, 1000000).__str__()

# starting up the network bandwidth experiment
client.start_experiment(Experiment.NETWORK_BANDWIDTH, namespace="default", name=exp_name, selector=selector, rate="1bps", buffer=1, limit=1, direction="to",
                        external_targets=["target"])

Pause an experiment

In order to pause an experiment you can use the following command

# pausing the experiment
client.pause_experiment(Experiment.POD_STRESS_MEMORY, namespace="default", name=exp_name)

Delete the experiment

The experiment can be removed from the k8s cluster using the following command

client.delete_experiment(Experiment.POD_STRESS_MEMORY, namespace="default", name=exp_name)

Logging

Initializing the ChaosMesh logger

import logging, sys

logging.getLogger("chaosmesh")
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

chaos_mesh-1.2.7.tar.gz (15.9 kB view details)

Uploaded Source

Built Distribution

chaos_mesh-1.2.7-py3-none-any.whl (32.2 kB view details)

Uploaded Python 3

File details

Details for the file chaos_mesh-1.2.7.tar.gz.

File metadata

  • Download URL: chaos_mesh-1.2.7.tar.gz
  • Upload date:
  • Size: 15.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.5

File hashes

Hashes for chaos_mesh-1.2.7.tar.gz
Algorithm Hash digest
SHA256 038fb8c51c617594e0ea6f2ca232d47b65f3ccd5d79f53e13a92365c24b16788
MD5 0a57f4485161c1297032b97715ee2515
BLAKE2b-256 8940651b4d95fe3fcf168fa5c92effdb3177d7f57cf6c9ceac20e4e9042a5128

See more details on using hashes here.

File details

Details for the file chaos_mesh-1.2.7-py3-none-any.whl.

File metadata

  • Download URL: chaos_mesh-1.2.7-py3-none-any.whl
  • Upload date:
  • Size: 32.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.5

File hashes

Hashes for chaos_mesh-1.2.7-py3-none-any.whl
Algorithm Hash digest
SHA256 f7112a2235197c04920f76405e60654740adf52566aaedd85d9fd42bbf00ea60
MD5 a4306c4da58a8d894dbcf5d128b43d9c
BLAKE2b-256 ecc5ca3acc6a69befd0e88b6b3f91ad29afb610a7b00700b04f147f9bf695362

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page