Skip to main content

Evaluates the CHAOS geomagnetic field model and other models of Earth's magnetic field.

Project description

Overview

ChaosMagPy is a simple Python package for evaluating the CHAOS geomagnetic field model and other models of Earth’s magnetic field. The latest CHAOS model is available at http://www.spacecenter.dk/files/magnetic-models/CHAOS-7/. To quickly get started, download the complete working example including the latest model under the “Forward code” section.

Documentation

The documentation of the current release is available on Read the Docs (https://chaosmagpy.readthedocs.io/en/)

pypi Documentation Status doi license

Citation

To reference ChaosMagPy in publications, please cite the package itself

https://doi.org/10.5281/zenodo.3352398

and, for CHAOS-7, the relevant journal publication:

Finlay, C.C., Kloss, C., Olsen, N., Hammer, M. Toeffner-Clausen, L., Grayver, A and Kuvshinov, A. (2020), The CHAOS-7 geomagnetic field model and observed changes in the South Atlantic Anomaly, Earth Planets and Space 72, doi:10.1186/s40623-020-01252-9

or, for the earlier CHAOS models, some of the following:

Finlay, C.C., Olsen, N., Kotsiaros, S., Gillet, N. and Toeffner-Clausen, L. (2016), Recent geomagnetic secular variation from Swarm and ground observatories as estimated in the CHAOS-6 geomagnetic field model Earth Planets Space, Vol 68, 112. doi: 10.1186/s40623-016-0486-1

Olsen, N., Luehr, H., Finlay, C.C., Sabaka, T. J., Michaelis, I., Rauberg, J. and Toeffner-Clausen, L. (2014), The CHAOS-4 geomagnetic field model, Geophys. J. Int., Vol 197, 815-827, doi: 10.1093/gji/ggu033.

Olsen, N., Luehr, H., Sabaka, T.J., Mandea, M. ,Rother, M., Toeffner-Clausen, L. and Choi, S. (2006), CHAOS — a model of Earth’s magnetic field derived from CHAMP, Ørsted, and SAC-C magnetic satellite data, Geophys. J. Int., vol. 166 67-75

Installation

ChaosMagPy relies on the following (some are optional):

  • python>=3.6

  • numpy<=1.26 (loading MAT-files fails in v2.0, waiting for fix in hdf5storage)

  • scipy

  • pandas

  • cython

  • h5py

  • hdf5storage>0.1.17

  • pyshp>=2.3.1

  • matplotlib>=3.6 (optional, used for plotting)

  • lxml (optional, used for downloading latest RC-index file)

Specific installation steps using the conda/pip package managers are as follows:

  1. Install packages with conda:

    >>> conda install python "numpy<2" scipy pandas cython pyshp h5py matplotlib lxml
    
  2. Install remaining packages with pip:

    >>> pip install hdf5storage
    
  3. Finally install ChaosMagPy either with pip from PyPI:

    >>> pip install chaosmagpy
    

    Or, if you have downloaded the distribution archives from the Python Package Index (PyPI) at https://pypi.org/project/chaosmagpy/#files, install ChaosMagPy using the built distribution:

    >>> pip install chaosmagpy-x.x-py3-none-any.whl
    

    replacing x.x with the relevant version, or using the source distribution:

    >>> pip install chaosmagpy-x.x.tar.gz
    

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

chaosmagpy-0.14.tar.gz (2.8 MB view details)

Uploaded Source

Built Distribution

chaosmagpy-0.14-py3-none-any.whl (2.8 MB view details)

Uploaded Python 3

File details

Details for the file chaosmagpy-0.14.tar.gz.

File metadata

  • Download URL: chaosmagpy-0.14.tar.gz
  • Upload date:
  • Size: 2.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.0

File hashes

Hashes for chaosmagpy-0.14.tar.gz
Algorithm Hash digest
SHA256 8f7fbdca18dd3264923a01de5cbdbceb89816ef26fda33f2a9bdf0047fdca905
MD5 38c7786a2463c323893f7346d5d0305c
BLAKE2b-256 251b5c959ced497c77e3fbf838964e7cc2292a074db321c807868e6b3da0e66d

See more details on using hashes here.

File details

Details for the file chaosmagpy-0.14-py3-none-any.whl.

File metadata

  • Download URL: chaosmagpy-0.14-py3-none-any.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.0

File hashes

Hashes for chaosmagpy-0.14-py3-none-any.whl
Algorithm Hash digest
SHA256 d292f73783b06521b23ab32c83e22f2aa71bd9a960c43774145df02ad482f548
MD5 7478664bf2fadc066427525542a899f9
BLAKE2b-256 48d5386c815f30409fd753f038c747a15505241840e79cf1b5c7d4177072f36b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page