Skip to main content

Develop C++/CUDA extensions with PyTorch like Python scripts

Project description

CharonLoad

PyPI - Version PyPI - Python Version GitHub License Tests Lint Documentation

CharonLoad is a bridge between Python code and rapidly developed custom C++/CUDA extensions to make writing high-performance research code with PyTorch easy:

  • 🔥 PyTorch C++ API detection and linking
  • 🔨 Automatic just-in-time (JIT) compilation of the C++/CUDA part
  • 📦 Cached incremental builds and automatic clean builds
  • 🔗 Full power of CMake for handling C++ dependencies
  • ⌨️ Python stub file generation for syntax highlighting and auto-completion in VS Code
  • 🐛 Interactive mixed Python/C++ debugging support in VS Code via Python C++ Debugger extension

CharonLoad reduces the burden to start writing and experimenting with custom GPU kernels in PyTorch by getting complex boilerplate code and common pitfalls out of your way. Developing C++/CUDA code with CharonLoad feels similar to writing Python scripts and lets you follow the same familiar workflow.

Installation

CharonLoad requires Python >=3.8 and can be installed from PyPI:

pip install charonload

Quick Start

CharonLoad only requires minimal changes to existing projects. In particular, a small configuration of the C++/CUDA project is added in the Python part while the CMake and C++ part should adopt some predefined functions:

  • <your_project>/main.py

    import charonload
    
    VSCODE_STUBS_DIRECTORY = pathlib.Path(__file__).parent / "typings"
    
    charonload.module_config["my_cpp_cuda_ext"] = charonload.Config(
        project_directory=pathlib.Path(__file__).parent / "<my_cpp_cuda_ext>",
        build_directory="custom/build/directory",  # optional
        stubs_directory=VSCODE_STUBS_DIRECTORY,  # optional
    )
    
    import other_module
    
  • <your_project>/other_module.py

    import my_cpp_cuda_ext  # JIT compiles and loads the extension
    
    tensor_from_ext = my_cpp_cuda_ext.generate_tensor()
    
  • <your_project>/<my_cpp_cuda_ext>/CMakeLists.txt

    find_package(charonload)
    
    if(charonload_FOUND)
        charonload_add_torch_library(${TORCH_EXTENSION_NAME} MODULE)
    
        target_sources(${TORCH_EXTENSION_NAME} PRIVATE src/<my_bindings>.cpp)
        # Further properties, e.g. link against other 3rd-party libraries, etc.
        # ...
    endif()
    
  • <your_project>/<my_cpp_cuda_ext>/src/<my_bindings>.cpp

    #include <torch/python.h>
    
    torch::Tensor generate_tensor();  // Implemented somewhere in <my_cpp_cuda_ext>
    
    PYBIND11_MODULE(TORCH_EXTENSION_NAME, m)
    {
        m.def("generate_tensor", &generate_tensor, "Optional Python docstring");
    }
    

Contributing

If you would like to contribute to CharonLoad, you can find more information in the Contributing guide.

License

MIT

Contact

Patrick Stotko - stotko@cs.uni-bonn.de

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

charonload-0.1.0.tar.gz (23.9 kB view details)

Uploaded Source

Built Distribution

charonload-0.1.0-py3-none-any.whl (28.0 kB view details)

Uploaded Python 3

File details

Details for the file charonload-0.1.0.tar.gz.

File metadata

  • Download URL: charonload-0.1.0.tar.gz
  • Upload date:
  • Size: 23.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for charonload-0.1.0.tar.gz
Algorithm Hash digest
SHA256 fd0fdd3b7060d469fc688e7d7b609791344143906dea681eecfe2edd8a0b78f0
MD5 06c869b29eb6580dc1d8894a5696ff5b
BLAKE2b-256 83f406ca2a538f2ea292377a59f6b14e94f1b06a2a954b85ba573817a9999ab8

See more details on using hashes here.

Provenance

File details

Details for the file charonload-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: charonload-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 28.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for charonload-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 c876e4ccb9f85821071eb7a7582f047c7f4bbbc4f2072132e72d0d206880320e
MD5 3cb92449d4e0a3a82e232f5a0ff48413
BLAKE2b-256 30b10a61781a100c2ff3abc937db2dfdd7d1ee76ced3bdabc8609748e383835f

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page