Skip to main content

Develop C++/CUDA extensions with PyTorch like Python scripts

Project description

CharonLoad

PyPI - Version PyPI - Python Version GitHub License Tests Lint Documentation

CharonLoad is a bridge between Python code and rapidly developed custom C++/CUDA extensions to make writing high-performance research code with PyTorch easy:

  • 🔥 PyTorch C++ API detection and linking
  • 🔨 Automatic just-in-time (JIT) compilation of the C++/CUDA part
  • 📦 Cached incremental builds and automatic clean builds
  • 🔗 Full power of CMake for handling C++ dependencies
  • ⌨️ Python stub file generation for syntax highlighting and auto-completion in VS Code
  • 🐛 Interactive mixed Python/C++ debugging support in VS Code via Python C++ Debugger extension

CharonLoad reduces the burden to start writing and experimenting with custom GPU kernels in PyTorch by getting complex boilerplate code and common pitfalls out of your way. Developing C++/CUDA code with CharonLoad feels similar to writing Python scripts and lets you follow the same familiar workflow.

Installation

CharonLoad requires Python >=3.8 and can be installed from PyPI:

pip install charonload

Quick Start

CharonLoad only requires minimal changes to existing projects. In particular, a small configuration of the C++/CUDA project is added in the Python part while the CMake and C++ part should adopt some predefined functions:

  • <your_project>/main.py

    import charonload
    
    VSCODE_STUBS_DIRECTORY = pathlib.Path(__file__).parent / "typings"
    
    charonload.module_config["my_cpp_cuda_ext"] = charonload.Config(
        project_directory=pathlib.Path(__file__).parent / "<my_cpp_cuda_ext>",
        build_directory="custom/build/directory",  # optional
        stubs_directory=VSCODE_STUBS_DIRECTORY,  # optional
    )
    
    import other_module
    
  • <your_project>/other_module.py

    import my_cpp_cuda_ext  # JIT compiles and loads the extension
    
    tensor_from_ext = my_cpp_cuda_ext.generate_tensor()
    
  • <your_project>/<my_cpp_cuda_ext>/CMakeLists.txt

    find_package(charonload)
    
    if(charonload_FOUND)
        charonload_add_torch_library(${TORCH_EXTENSION_NAME} MODULE)
    
        target_sources(${TORCH_EXTENSION_NAME} PRIVATE src/<my_bindings>.cpp)
        # Further properties, e.g. link against other 3rd-party libraries, etc.
        # ...
    endif()
    
  • <your_project>/<my_cpp_cuda_ext>/src/<my_bindings>.cpp

    #include <torch/python.h>
    
    torch::Tensor generate_tensor();  // Implemented somewhere in <my_cpp_cuda_ext>
    
    PYBIND11_MODULE(TORCH_EXTENSION_NAME, m)
    {
        m.def("generate_tensor", &generate_tensor, "Optional Python docstring");
    }
    

Contributing

If you would like to contribute to CharonLoad, you can find more information in the Contributing guide.

License

MIT

Contact

Patrick Stotko - stotko@cs.uni-bonn.de

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

charonload-0.1.3.tar.gz (25.9 kB view hashes)

Uploaded Source

Built Distribution

charonload-0.1.3-py3-none-any.whl (30.3 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page