Skip to main content

Use ChatGPT to accelerator your research.

Project description

ChatResearch

pypi python version license precommit black Ruff

ChatResearch is a tool that uses OpenAI's GPT-3 to accelerate your research. It provides several features such as generating summary papers, fetching and summarizing papers from arxiv and bioarxiv, generating responses for review comments, and more.

Why ChatResearch?

Numerous projects and research endeavors have been undertaken in the realm of ChatGPT, yet none have met my specific requirements. As a result, I have resolved to create my own project, tailored to my personal preferences. I shall persist in refining and enhancing this project. Please do not hesitate to leave a star, and I am grateful for your support and ratings. I welcome any suggestions, proposals, and pull requests.

TODO

  • Multi thread support
  • Support Async support
  • Format PDF output
  • Support output latex
  • Tune prompt to support latex
  • Fine-tune prompt
  • Generate Image
  • Add RSS support for multiple journal
  • Add gif

Features

  • Chat Config: Generate chatre.toml in current working directory or set environment variable OPENAI_API_KEY.
  • Chat Reviewer: Generate summary paper with specified research fields and language.
  • Chat Arxiv: Fetch and summary paper from arxiv with specified query and language.
  • Chat Response: Generate response for review comment with specified language.
  • Chat Paper: Fetch or summary paper from local or arxiv with specified query, research fields, and language.
  • Chat Biorxiv: Fetch and summary paper from bioarxiv with specified category, filter keys, and language.
  • Markdown and PDF report

Installation

$pip install chat-research

Usage

> chatre -h
usage: chatre [-h] [--log-level ]
              {reviewer,arxiv,response,paper,config,biorxiv} ...

chatre Use ChatGPT to accelerate research

optional arguments:
  -h, --help                              show this help message and exit
  --log-level         The log level (default: info)

subcommand:
  valid subcommand

  {reviewer,arxiv,response,paper,config,biorxiv}
    reviewer                              Summary paper
    arxiv                                 Fetch and summary paper from arxiv
    response                              Generate reponse for review comment
    paper                                 Fetch or Summary paper from local or arxiv
    config                                Generate configuration file
    biorxiv                               Fetch and Summary paper from bioarxiv

Chat Config

❯ chatre config

It will generate apikey.toml in current working directory. Otherwise, setting environment variable OPENAI_API_KEY is another way to config API KEY.

[OpenAI]
OPENAI_API_KEYS = [ "sk-key1", "sk-key2",]

[Gitee]
api = "your_gitee_api"
owner = "your_gitee_name"
repo = "your_repo_name"
path = "files_name_in_your_repo"

Chat Reviewer

> chatre reviewer -h
usage: chatre reviewer [-h] --paper-path  [--file-format] [--review-format] [--research-fields] [--language]

optional arguments:
  -h, --help          show this help message and exit
  --paper-path        path of papers
  --file-format       output file format (default: txt)
  --review-format     review format
  --research-fields   the research fields of paper (default: computer science, artificial intelligence and reinforcement learning)
  --language          output language, en or zh (default: en)

Chat Arxiv

❯ chatre arxiv -h
usage: chatre arxiv [-h] [--query] [--key-word] [--page-num] [--max-results] [--days] [--sort] [--save-image] [--file-format] [--language]

optional arguments:
  -h, --help      show this help message and exit
  --query         the query string, ti: xx, au: xx, all: xx,
  --key-word      the key word of user research fields
  --page-num      the maximum number of page
  --max-results   the maximum number of results
  --days          the last days of arxiv papers of this query
  --sort          another is LastUpdatedDate
  --save-image    save image? It takes a minute or two to save a picture! But pretty
  --file-format   export file format, if you want to save pictures, md is the best, if not, txt will not be messy
  --language      The other output lauguage is English, is en

Chat Response

❯ chatre response -h
usage: chatre response [-h] --comment-path  [--file-format] [--language]

optional arguments:
  -h, --help       show this help message and exit
  --comment-path   path of comment
  --file-format    output file format (default: txt)
  --language       output language, en or zh (default: en)

Chat Paper

❯ chatre paper -h
usage: chatre paper [-h] [--pdf-path] [--query] [--key-word] [--filter-keys] [--max-results] [--sort] [--save-image] [--file-format] [--language]

optional arguments:
  -h, --help      show this help message and exit
  --pdf-path      if none, the bot will download from arxiv with query
  --query         the query string, ti: xx, au: xx, all: xx (default: all: ChatGPT robot)
  --key-word      the key word of user research fields (default: reinforcement learning)
  --filter-keys   the filter key words, every word in the abstract must have, otherwise it will not be selected as the target paper (default: ChatGPT
                  robot)
  --max-results   the maximum number of results (default: 1)
  --sort          another is LastUpdatedDate (default: Relevance)
  --save-image    save image? It takes a minute or two to save a picture! But pretty (default: False)
  --file-format   the format of the exported file, if you save the picture, it is best to be md, if not, the txt will not be messy (default: md)
  --language      The other output lauguage is English, is en (default: en)

Chat Biorxiv

❯ chatre biorxiv -h
usage: chatre biorxiv [-h] [--category  [...]] [--date  | --days ] [--server] [--filter-keys  [...]] [--max-results] [--sort] [--save-image]
                      [--file-format] [--language]

optional arguments:
  -h, --help            show this help message and exit
  --category  [ ...]    the category of user research fields (default: bioinformatics)
  --date                the date of user research fields (example 2018-08-21:2018-08-28)
  --days                the last days of arxiv papers of this query (default: 2)
  --server              the category of user research fields (default: biorxiv)
  --filter-keys  [ ...]
                        the filter key words, every word in the abstract must have, otherwise it will not be selected as the target paper
  --max-results         the maximum number of results (default: 20)
  --sort                another is LastUpdatedDate (default: Relevance)
  --save-image          save image? It takes a minute or two to save a picture! But pretty (default: False)
  --file-format         the format of the exported file, if you save the picture, it is best to be md, if not, the txt will not be messy (default: md)
  --language            The other output lauguage is English, is en (default: en)

License

This project is licensed under the MIT License - see the LICENSE file for details.

Contributors

  • Yangyang Li

Alt

Acknowledgement

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

chat_research-0.1.5.tar.gz (41.4 kB view details)

Uploaded Source

Built Distribution

chat_research-0.1.5-py3-none-any.whl (52.8 kB view details)

Uploaded Python 3

File details

Details for the file chat_research-0.1.5.tar.gz.

File metadata

  • Download URL: chat_research-0.1.5.tar.gz
  • Upload date:
  • Size: 41.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for chat_research-0.1.5.tar.gz
Algorithm Hash digest
SHA256 225803b8d4b2fff43be66c4f8b6313a06689617b666deadaf26f5d045c3c73c5
MD5 8ab751399a4eda76c64f19cbc2f3bd7e
BLAKE2b-256 66058b243653d4e4f9b373f5dc90cc901022067fd10cd682e89f4b030c1f7768

See more details on using hashes here.

File details

Details for the file chat_research-0.1.5-py3-none-any.whl.

File metadata

File hashes

Hashes for chat_research-0.1.5-py3-none-any.whl
Algorithm Hash digest
SHA256 2bf91878b3e505f5d7ec7c845b02ee9b800ed06facb98a4d97b46d4ea19cb969
MD5 ada37963a19ee9afb08f0b26710cca8f
BLAKE2b-256 c5f27594286be585de55e17fc43cd5a0100e7217999850df39e98ff93c52cd8b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page