Skip to main content

ChatterBot is a machine learning, conversational dialog engine.

Project description

ChatterBot: Machine learning in Python

ChatterBot

ChatterBot is a machine-learning based conversational dialog engine build in Python which makes it possible to generate responses based on collections of known conversations. The language independent design of ChatterBot allows it to be trained to speak any language.

Package Version Python 3.6 Django 2.0 Requirements Status Build Status Documentation Status Coverage Status Code Climate Join the chat at https://gitter.im/chatterbot/Lobby

An example of typical input would be something like this:

user: Good morning! How are you doing?
bot: I am doing very well, thank you for asking.
user: You're welcome.
bot: Do you like hats?

How it works

An untrained instance of ChatterBot starts off with no knowledge of how to communicate. Each time a user enters a statement, the library saves the text that they entered and the text that the statement was in response to. As ChatterBot receives more input the number of responses that it can reply and the accuracy of each response in relation to the input statement increase. The program selects the closest matching response by searching for the closest matching known statement that matches the input, it then returns the most likely response to that statement based on how frequently each response is issued by the people the bot communicates with.

Installation

This package can be installed from PyPi by running:

pip install chatterbot

Basic Usage

from chatterbot import ChatBot
from chatterbot.trainers import ChatterBotCorpusTrainer

chatbot = ChatBot('Ron Obvious')

# Create a new trainer for the chatbot
trainer = ChatterBotCorpusTrainer(chatbot)

# Train the chatbot based on the english corpus
trainer.train("chatterbot.corpus.english")

# Get a response to an input statement
chatbot.get_response("Hello, how are you today?")

Training data

ChatterBot comes with a data utility module that can be used to train chat bots. At the moment there is training data for over a dozen languages in this module. Contributions of additional training data or training data in other languages would be greatly appreciated. Take a look at the data files in the chatterbot-corpus package if you are interested in contributing.

from chatterbot.trainers import ChatterBotCorpusTrainer

# Create a new trainer for the chatbot
trainer = ChatterBotCorpusTrainer(chatbot)

# Train based on the english corpus
trainer.train("chatterbot.corpus.english")

# Train based on english greetings corpus
trainer.train("chatterbot.corpus.english.greetings")

# Train based on the english conversations corpus
trainer.train("chatterbot.corpus.english.conversations")

Corpus contributions are welcome! Please make a pull request.

Documentation

View the documentation for ChatterBot on Read the Docs.

To build the documentation yourself using Sphinx, run:

sphinx-build -b html docs/ build/

Examples

For examples, see the examples directory in this project's git repository.

There is also an example Django project using ChatterBot, as well as an example Flask project using ChatterBot.

History

See release notes for changes https://github.com/gunthercox/ChatterBot/releases

Development pattern for contributors

  1. Create a fork of the main ChatterBot repository on GitHub.
  2. Make your changes in a branch named something different from master, e.g. create a new branch my-pull-request.
  3. Create a pull request.
  4. Please follow the Python style guide for PEP-8.
  5. Use the projects built-in automated testing. to help make sure that your contribution is free from errors.

License

ChatterBot is licensed under the BSD 3-clause license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ChatterBot2-1.1.0a7.tar.gz (44.5 kB view details)

Uploaded Source

Built Distribution

ChatterBot2-1.1.0a7-py2.py3-none-any.whl (63.8 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file ChatterBot2-1.1.0a7.tar.gz.

File metadata

  • Download URL: ChatterBot2-1.1.0a7.tar.gz
  • Upload date:
  • Size: 44.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/58.2.0 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.2

File hashes

Hashes for ChatterBot2-1.1.0a7.tar.gz
Algorithm Hash digest
SHA256 c686bfe72b2733e19e3cb1ea0fb1807ee6d445b175fd754291c20940bd2747e2
MD5 dd1d3acacb3dc0884f7d955ef22ce833
BLAKE2b-256 c6fba83f2952d3a5f25ad87ed18bf5b8a05af6adf507aad7f151753c0bc8b1ab

See more details on using hashes here.

File details

Details for the file ChatterBot2-1.1.0a7-py2.py3-none-any.whl.

File metadata

  • Download URL: ChatterBot2-1.1.0a7-py2.py3-none-any.whl
  • Upload date:
  • Size: 63.8 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/58.2.0 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.2

File hashes

Hashes for ChatterBot2-1.1.0a7-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 65c1393c53ada0648ecdcd7cabff8b80e84ad266ad57e7ba08485fe1a8631765
MD5 2d90c173d4f2d269395c655f2da27ccd
BLAKE2b-256 4e8df77b3db45fec72b1a62a49755714da41ac767a7e1598c940b7e530942ca0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page