Skip to main content

A package to send ML training checkpoints online in Python

Project description

checkpointlib

A package to send ML training checkpoints online in Python

When training Machine Learning models, it's common that it can take a while to train on a computer which you obviously can't sit beside all day, every day. This library allows you to send progress checkpoints online to our servers, so that you can see your progress when you're away.

Using checkpointlib

Once you've installed the python file containing the client-side code, you'll be able to do the following to set your program up to send progress checkpoints online.

  • First, import checkpointlib:
    from checkpointlib import checkpointlib
    
  • Create a new checkpointAccount object:
    myCheckpointAccout = checkpointlib.checkpointAccount(0)
    
    OR
    myCheckpointAccount = checkpointlib.checkpointAccount("[PUT YOUR KEY HERE]")
    
    If you do the first option, and make the value be the integer 0, then it will automatically create a random user key for you. However, if you choose to do the second option, then you can select your own user key.
  • Save your user key for later - you can check just what your key is with myCheckpointAccount.key, which you can use if you want to save to the same key later. However, you can also use myCheckpointAccount.url to get the full URL of your checkpoint account. Visit that URL to see the progress online from another device (this will be explained more later)
  • Save progress to your key online - to save progress, type:
    myCheckpointAccount.saveCheckpoint("[TYPE THE PROGRESS UPDATE HERE]")
    
    This will save the latest progress update, which you enter as an argument, to your online key (which you can see at the URL which you receive with myCheckpointAccount.url)
  • Clear your checkpoint progress:
    myCheckpointAccount.clear()
    
    This will clear the checkpoint progress online on your key, but does not delete the checkpoint account.
  • Delete the checkpoint account from our servers:
    myCheckpointAccount.delete()
    
    This will delete your account from our servers - however, it can still be created again.

Checking progress online

To see your program's progress online, you can do one of the following:

  • Go to the URL given by entering myCheckpointAccount.url; OR
  • Visit the webpage "https://kendasi.com/checkpoints/" + your user key (given by entering myCheckpointAccount.key)

Open source

This project is open source under the GNU 3.0 license. You are free to use this code and anything else within the project however you see fit, besides selling it as closed-source software. The code is avaliable on github.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

checkpointlib-0.0.2.tar.gz (14.2 kB view details)

Uploaded Source

Built Distribution

checkpointlib-0.0.2-py3-none-any.whl (15.1 kB view details)

Uploaded Python 3

File details

Details for the file checkpointlib-0.0.2.tar.gz.

File metadata

  • Download URL: checkpointlib-0.0.2.tar.gz
  • Upload date:
  • Size: 14.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.6

File hashes

Hashes for checkpointlib-0.0.2.tar.gz
Algorithm Hash digest
SHA256 12dbebd876dba30e6e88aa780b8d5ee20511bd70c21865b59219efbc34ec4f81
MD5 180ec7fc4a6c08bb60b33b38392ecce9
BLAKE2b-256 8df7af6e0e16d7f3a3ea3d455896e7643aa67cea26d40b51de98eae4d5961393

See more details on using hashes here.

File details

Details for the file checkpointlib-0.0.2-py3-none-any.whl.

File metadata

File hashes

Hashes for checkpointlib-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 b1fb9545aead197706e4b06444c96b52d7f0470683028a4c4d77bba3c00cd19c
MD5 d267b1359da505d302a685dd8805d52f
BLAKE2b-256 019e953753e90bd5c56a910f82c9983279af87b1f52449b7840a07b2af610187

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page