Skip to main content

A Machine Learning and Informatics Program Suite for the Chemical and Materials Sciences

Project description

Build Status codecov Language grade: Python version status license

ChemML

ChemML is a machine learning and informatics program suite for the analysis, mining, and modeling of chemical and materials data. Please check the ChemML website for more information.

ChemML

Code Design:

ChemML is developed in the Python 3 programming language and makes use of a host of data analysis and ML libraries(accessible through the Anaconda distribution), as well as domain-specific libraries. The development follows a strictly modular and object-oriented design to make the overall code as flexible and versatile as possible.

The format of library is similar to the well known libraries like Scikit-learn.

Latest Version:

  • to find out about the latest version and release history, click here

Installation and Dependencies:

You can download ChemML from PyPI via pip.

pip install chemml --user -U

Here is a list of external libraries that will be installed with chemml:

  • numpy
  • pandas
  • tensorflow
  • scikit-learn
  • matplotlib
  • seaborn
  • lxml
  • openpyxl
  • ipywidgets

We strongly recommend you to install ChemML in an Anaconda environment. The instructions to create the environment, install ChemML’s dependencies, and subsequently install Chemml using the Python Package Index (PyPI) via pip are as follows:

conda create --name chemml_env python=3.8
source activate chemml_env
conda install -c conda-forge openbabel rdkit nb_conda_kernels python-graphviz
pip install chemml

Citation:

Please cite the use of ChemML as:

Main citation:

@article{chemml2019,
author = {Haghighatlari, Mojtaba and Vishwakarma, Gaurav and Altarawy, Doaa and Subramanian, Ramachandran and Kota, Bhargava Urala and Sonpal, Aditya and Setlur, Srirangaraj and Hachmann, Johannes},
journal = {ChemRxiv},
pages = {8323271},
title = {ChemML: A Machine Learning and Informatics Program Package for the Analysis, Mining, and Modeling of Chemical and Materials Data},
doi = {10.26434/chemrxiv.8323271.v1},
year = {2019}
}


Other references:

@article{chemml_review2019,
author = {Haghighatlari, Mojtaba and Hachmann, Johannes},
doi = {https://doi.org/10.1016/j.coche.2019.02.009},
issn = {2211-3398},
journal = {Current Opinion in Chemical Engineering},
month = {jan},
pages = {51--57},
title = {Advances of machine learning in molecular modeling and simulation},
volume = {23},
year = {2019}
}

@article{Hachmann2018,
author = {Hachmann, Johannes and Afzal, Mohammad Atif Faiz and Haghighatlari, Mojtaba and Pal, Yudhajit},
doi = {10.1080/08927022.2018.1471692},
issn = {10290435},
journal = {Molecular Simulation},
number = {11},
pages = {921--929},
title = {Building and deploying a cyberinfrastructure for the data-driven design of chemical systems and the exploration of chemical space},
volume = {44},
year = {2018}
}

@article{vishwakarma2019towards,
title={Towards autonomous machine learning in chemistry via evolutionary algorithms},
author={Vishwakarma, Gaurav and Haghighatlari, Mojtaba and Hachmann, Johannes},
journal={ChemRxiv preprint},
year={2019}
}

License:

ChemML is copyright (C) 2014-2018 Johannes Hachmann and Mojtaba Haghighatlari, all rights reserved. ChemML is distributed under 3-Clause BSD License (https://opensource.org/licenses/BSD-3-Clause).

About us:

Maintainers:

- Johannes Hachmann, hachmann@buffalo.edu
- Mojtaba Haghighatlari
- Aditya Sonpal, adityaso@buffalo.edu
- Aatish Pradhan, aatishpr@buffalo.edu
University at Buffalo - The State University of New York (UB)

Contributors:

- Doaa Altarawy (MolSSI): scientific advice and software mentor 
- Gaurav Vishwakarma (UB): automated model optimization
- Ramachandran Subramanian (UB): Magpie descriptor library port
- Bhargava Urala Kota (UB): library database
- Aditya Sonpal (UB): graph convolution NNs
- Srirangaraj Setlur (UB): scientific advice
- Venugopal Govindaraju (UB): scientific advice
- Krishna Rajan (UB): scientific advice
- Aatish Pradhan (UB): Jupyter GUI developer

- We encourage any contributions and feedback. Feel free to fork and make pull-request to the "development" branch.

Acknowledgements:

- ChemML is based upon work supported by the U.S. National Science Foundation under grant #OAC-1751161 and in part by #OAC-1640867.
- ChemML was also supported by start-up funds provided by UB's School of Engineering and Applied Science and UB's Department of Chemical and Biological Engineering, the New York State Center of Excellence in Materials Informatics through seed grant #1140384-8-75163, and the U.S. Department of Energy under grant #DE-SC0017193.
- Mojtaba Haghighatlari received 2018 Phase-I and 2019 Phase-II Software Fellowships by the Molecular Sciences Software Institute (MolSSI) for his work on ChemML.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

chemml-1.0.tar.gz (557.1 kB view details)

Uploaded Source

Built Distribution

chemml-1.0-py3-none-any.whl (641.9 kB view details)

Uploaded Python 3

File details

Details for the file chemml-1.0.tar.gz.

File metadata

  • Download URL: chemml-1.0.tar.gz
  • Upload date:
  • Size: 557.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.5.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for chemml-1.0.tar.gz
Algorithm Hash digest
SHA256 668117750bf2b5335d651480ee79b079d4fdccd378bca1690c8c4e523fe0e640
MD5 5e948875d674ea8a09544b8bb2148c5b
BLAKE2b-256 45eeda08e027dd8e559645a684ccfe6d77db5fae15d9d1fe7bafee0412668444

See more details on using hashes here.

File details

Details for the file chemml-1.0-py3-none-any.whl.

File metadata

  • Download URL: chemml-1.0-py3-none-any.whl
  • Upload date:
  • Size: 641.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.5.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for chemml-1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 4a65065971acb770f2f3cfeee6cce18ec829d9351ea589593f97eae7a60a4b61
MD5 a69a772a1ebc44d6435454c627aeb672
BLAKE2b-256 6f2070df7e1a3847d06bcf63d0fee40709f0793613c6b2519436f4f2aca7ad15

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page