Skip to main content

A set of basic reusable utilities and tools to facilitate quickly getting up and going on any machine learning project.

Project description

cheutils

A set of basic reusable utilities and tools to facilitate quickly getting up and going on any machine learning project.

Features

  • model_options: methods such as get_regressor to get a handle on a configured estimator with a specified parameter dictionary or get_default_grid to get the configured hyperparameter grid
  • model_builder: methods for building and executing ML pipeline steps e.g., fit, predict, score, params_optimization etc.
  • project_tree: methods for accessing the project tree - e.g., get_data_dir() for accessing the configured data and get_output_dir() for the output folders, loading and savings Excel and CSV.
  • common_utils: methods to support common programming tasks, such as labeling or tagging and date-stamping files
  • propertiesutil: utility for managing properties files or project configuration, based on jproperties. The application configuration is expected to be available in a file named app-config.properties, which can be placed anywhere in the project root or any subfolder thereafter.
  • decorator_debug, decorator_timer, and decorator_singleton: decorators for enabling logging and method timers; as well as a singleton decorator

Usage

You import the cheutils module as per usual:

import cheutils

The following provide access to the properties file, usually expected to be named "app-config.properties" and typically found in the project data folder or anywhere either in the project root or any other subfolder

APP_PROPS = cheutils.AppProperties() # to load the app-config.properties file

Thereafter, you can read any properties using various methods such as:

DATA_DIR = APP_PROPS.get('project.data.dir')

You can also retrieve the path to the data folder, which is under the project root as follows:

cheutils.get_data_dir()  # returns the path to the project data folder, which is always interpreted relative to the project root

You can retrieve other properties as follows:

VALUES_LIST = APP_PROPS.get_list('some.configured.list') # e.g., some.configured.list=[1, 2, 3] or ['1', '2', '3']
VALUES_DIC = APP_PROPS.get_dic_properties('some.configured.dict') # e.g., some.configured.dict={'val1': 10, 'val2': 'value'}
BOL_VAL = APP_PROPS.get_bol('some.configured.bol') # e.g., some.configured.bol=True

You also have access to the LOGGER - you can simply call LOGGER.debug() in a similar way to you will when using loguru or standard logging calling set_prefix() on the LOGGER instance ensures the log messages are scoped to that context thereafter, which can be helpful when reviewing the generated log file (app-log.log) - the default prefix is "app-log".

You can get a handle to an application logger as follows:

LOGGER = cheutils.LoguruWrapper().get_logger()

You can set the logger prefix as follows:

LOGGER.set_prefix(prefix='my_project')

The model_options currently supports the following regressors: Lasso, LinearRegression, Ridge, GradientBoostingRegressor, XGBRegressor, LGBMRegressor, DecisionTreeRegressor, RandomForestRegressor You can configure any of the models for your project with an entry in the app-config.properties as follows:

model.active.model_option=xgb_boost # with default parameters

You can get a handle to the corresponding regressor as follows:

regressor = cheutils.get_regressor(model_option='xgb_boost')

You can also configure the following property for example:

model.param_grids.xgb_boost={'learning_rate': {'type': float, 'start': 0.0, 'end': 1.0, 'num': 10}, 'subsample': {'type': float, 'start': 0.0, 'end': 1.0, 'num': 10}, 'min_child_weight': {'type': float, 'start': 0.1, 'end': 1.0, 'num': 10}, 'n_estimators': {'type': int, 'start': 10, 'end': 400, 'num': 10}, 'max_depth': {'type': int, 'start': 3, 'end': 17, 'num': 5}, 'colsample_bytree': {'type': float, 'start': 0.0, 'end': 1.0, 'num': 5}, 'gamma': {'type': float, 'start': 0.0, 'end': 1.0, 'num': 5}, 'reg_alpha': {'type': float, 'start': 0.0, 'end': 1.0, 'num': 5}, }

Thereafter, you can do the following:

regressor = cheutils.get_regressor(**get_params(model_option='xgb_boost'))

Thereafter, you can simply fit the model as follows:

cheutils.fit(regressor, X_train, y_train)

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cheutils-2.1.11.tar.gz (27.5 kB view details)

Uploaded Source

Built Distribution

cheutils-2.1.11-py3-none-any.whl (31.6 kB view details)

Uploaded Python 3

File details

Details for the file cheutils-2.1.11.tar.gz.

File metadata

  • Download URL: cheutils-2.1.11.tar.gz
  • Upload date:
  • Size: 27.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.12

File hashes

Hashes for cheutils-2.1.11.tar.gz
Algorithm Hash digest
SHA256 4cdef4a46f9cdd29b9b81b610d2c5e0cdbd11fe75782bc14f5b64c4560f23287
MD5 0acd72242242830ef9628c4056a5efe0
BLAKE2b-256 58e0428f96a2eb830ae2ce300ce0888adaf6b6195900c7f708b897d8d9b929aa

See more details on using hashes here.

File details

Details for the file cheutils-2.1.11-py3-none-any.whl.

File metadata

  • Download URL: cheutils-2.1.11-py3-none-any.whl
  • Upload date:
  • Size: 31.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.12

File hashes

Hashes for cheutils-2.1.11-py3-none-any.whl
Algorithm Hash digest
SHA256 61992133e9d7ae38686e69ac2e469339a4460aab339e1be993372e3c869f9466
MD5 81906eda4531623a928fc9bb7f3eb7a2
BLAKE2b-256 d23569c5adf3f8f1a530f47b3b6757a24b7c41189c685ca36fc1f2c953217d25

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page