Skip to main content

A set of basic reusable utilities and tools to facilitate quickly getting up and going on any machine learning project.

Project description

cheutils

A set of basic reusable utilities and tools to facilitate quickly getting up and going on any machine learning project.

Features

  • model_options: methods such as get_regressor to get a handle on a configured estimator with a specified parameter dictionary or get_default_grid to get the configured hyperparameter grid
  • model_builder: methods for building and executing ML pipeline steps e.g., fit, predict, score, params_optimization etc.
  • project_tree: methods for accessing the project tree - e.g., get_data_dir() for accessing the configured data and get_output_dir() for the output folders, loading and savings Excel and CSV.
  • common_utils: methods to support common programming tasks, such as labeling or tagging and date-stamping files
  • propertiesutil: utility for managing properties files or project configuration, based on jproperties. The application configuration is expected to be available in a file named app-config.properties, which can be placed anywhere in the project root or any subfolder thereafter.
  • decorator_debug, decorator_timer, and decorator_singleton: decorators for enabling logging and method timers; as well as a singleton decorator

Usage

You import the cheutils module as per usual:

import cheutils

The following provide access to the properties file, usually expected to be named "app-config.properties" and typically found in the project data folder or anywhere either in the project root or any other subfolder

APP_PROPS = cheutils.AppProperties() # to load the app-config.properties file

Thereafter, you can read any properties using various methods such as:

DATA_DIR = APP_PROPS.get('project.data.dir')

You can also retrieve the path to the data folder, which is under the project root as follows:

cheutils.get_data_dir()  # returns the path to the project data folder, which is always interpreted relative to the project root

You can retrieve other properties as follows:

VALUES_LIST = APP_PROPS.get_list('some.configured.list') # e.g., some.configured.list=[1, 2, 3] or ['1', '2', '3']
VALUES_DIC = APP_PROPS.get_dic_properties('some.configured.dict') # e.g., some.configured.dict={'val1': 10, 'val2': 'value'}
BOL_VAL = APP_PROPS.get_bol('some.configured.bol') # e.g., some.configured.bol=True

You also have access to the LOGGER - you can simply call LOGGER.debug() in a similar way to you will when using loguru or standard logging calling set_prefix() on the LOGGER instance ensures the log messages are scoped to that context thereafter, which can be helpful when reviewing the generated log file (app-log.log) - the default prefix is "app-log".

You can get a handle to an application logger as follows:

LOGGER = cheutils.LoguruWrapper().get_logger()

You can set the logger prefix as follows:

LOGGER.set_prefix(prefix='my_project')

The model_options currently supports the following regressors: Lasso, LinearRegression, Ridge, GradientBoostingRegressor, XGBRegressor, LGBMRegressor, DecisionTreeRegressor, RandomForestRegressor You can configure any of the models for your project with an entry in the app-config.properties as follows:

model.active.model_option=xgb_boost # with default parameters

You can get a handle to the corresponding regressor as follows:

regressor = cheutils.get_regressor(model_option='xgb_boost')

You can also configure the following property for example:

model.param_grids.xgb_boost={'learning_rate': {'type': float, 'start': 0.0, 'end': 1.0, 'num': 10}, 'subsample': {'type': float, 'start': 0.0, 'end': 1.0, 'num': 10}, 'min_child_weight': {'type': float, 'start': 0.1, 'end': 1.0, 'num': 10}, 'n_estimators': {'type': int, 'start': 10, 'end': 400, 'num': 10}, 'max_depth': {'type': int, 'start': 3, 'end': 17, 'num': 5}, 'colsample_bytree': {'type': float, 'start': 0.0, 'end': 1.0, 'num': 5}, 'gamma': {'type': float, 'start': 0.0, 'end': 1.0, 'num': 5}, 'reg_alpha': {'type': float, 'start': 0.0, 'end': 1.0, 'num': 5}, }

Thereafter, you can do the following:

regressor = cheutils.get_regressor(**get_params(model_option='xgb_boost'))

Thereafter, you can simply fit the model as follows:

cheutils.fit(regressor, X_train, y_train)

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cheutils-2.2.5.tar.gz (28.0 kB view details)

Uploaded Source

Built Distribution

cheutils-2.2.5-py3-none-any.whl (32.2 kB view details)

Uploaded Python 3

File details

Details for the file cheutils-2.2.5.tar.gz.

File metadata

  • Download URL: cheutils-2.2.5.tar.gz
  • Upload date:
  • Size: 28.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.7

File hashes

Hashes for cheutils-2.2.5.tar.gz
Algorithm Hash digest
SHA256 985761bbd1a753a9d07cfb5f58173dc59f7218b93129b2bf7a8bfed4f7d7a57c
MD5 01d807b1af228aa018cb5f10f7733e27
BLAKE2b-256 ee3672c99069fd4da464c6034797c4a0718626c241d74346cfd236c2a2797640

See more details on using hashes here.

File details

Details for the file cheutils-2.2.5-py3-none-any.whl.

File metadata

  • Download URL: cheutils-2.2.5-py3-none-any.whl
  • Upload date:
  • Size: 32.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.7

File hashes

Hashes for cheutils-2.2.5-py3-none-any.whl
Algorithm Hash digest
SHA256 e8cda927615bb6f5ae0aa60bd34d9978454b4e8850c76cb0a9b479611c316c10
MD5 2a2246aa9508d101c25144605b006a83
BLAKE2b-256 0a4608f277f881f660c127c40d48aac120d9b4fcc5fd5f94194cc7eeb93eb4f1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page