Skip to main content

Pretrained Universal Neural Network Potential for Charge-informed Atomistic Modeling

Project description

CHGNet

Tests Codacy Badge arXiv GitHub repo size PyPI Docs Requires Python 3.10+

A pretrained universal neural network potential for charge-informed atomistic modeling (see publication) Logo Crystal Hamiltonian Graph neural Network is pretrained on the GGA/GGA+U static and relaxation trajectories from Materials Project, a comprehensive dataset consisting of more than 1.5 Million structures from 146k compounds spanning the whole periodic table.

CHGNet highlights its ability to study electron interactions and charge distribution in atomistic modeling with near DFT accuracy. The charge inference is realized by regularizing the atom features with DFT magnetic moments, which carry rich information about both local ionic environments and charge distribution.

Pretrained CHGNet achieves excellent performance on materials stability prediction from unrelaxed structures according to Matbench Discovery [repo].

Example notebooks

Notebooks Google Colab Descriptions
CHGNet Basics Open in Google Colab Examples for loading pre-trained CHGNet, predicting energy, force, stress, magmom as well as running structure optimization and MD.
Tuning CHGNet Open in Google Colab Examples of fine tuning the pretrained CHGNet to your system of interest.
Visualize Relaxation Open in Google Colab Crystal Toolkit app that visualizes convergence of atom positions, energies and forces of a structure during CHGNet relaxation.
Phonon DOS + Bands Open in Google Colab Use CHGNet with the atomate2 phonon workflow based on finite displacements as implemented in Phonopy to calculate phonon density of states and band structure for Si (mp-149).
Elastic tensor + bulk/shear modulus Open in Google Colab Use CHGNet with the atomate2 elastic workflow based on a stress-strain approach to calculate elastic tensor and derived bulk and shear modulus for Si (mp-149).

Installation

pip install chgnet

if PyPI installation fails or you need the latest main branch commits, you can install from source:

pip install git+https://github.com/CederGroupHub/chgnet

Tutorials and Docs

2023-11-02-sciML-webinar

See the sciML webinar tutorial on 2023-11-02 and API docs.

Usage

Direct Inference (Static Calculation)

Pretrained CHGNet can predict the energy (eV/atom), force (eV/A), stress (GPa) and magmom ($\mu_B$) of a given structure.

from chgnet.model.model import CHGNet
from pymatgen.core import Structure

chgnet = CHGNet.load()
structure = Structure.from_file('examples/mp-18767-LiMnO2.cif')
prediction = chgnet.predict_structure(structure)

for key, unit in [
    ("energy", "eV/atom"),
    ("forces", "eV/A"),
    ("stress", "GPa"),
    ("magmom", "mu_B"),
]:
    print(f"CHGNet-predicted {key} ({unit}):\n{prediction[key[0]]}\n")

Molecular Dynamics

Charge-informed molecular dynamics can be simulated with pretrained CHGNet through ASE python interface (see below), or through LAMMPS.

from chgnet.model.model import CHGNet
from chgnet.model.dynamics import MolecularDynamics
from pymatgen.core import Structure
import warnings
warnings.filterwarnings("ignore", module="pymatgen")
warnings.filterwarnings("ignore", module="ase")

structure = Structure.from_file("examples/mp-18767-LiMnO2.cif")
chgnet = CHGNet.load()

md = MolecularDynamics(
    atoms=structure,
    model=chgnet,
    ensemble="nvt",
    temperature=1000,  # in K
    timestep=2,  # in femto-seconds
    trajectory="md_out.traj",
    logfile="md_out.log",
    loginterval=100,
)
md.run(50)  # run a 0.1 ps MD simulation

The MD defaults to CUDA if available, to manually set device to cpu or mps: MolecularDynamics(use_device='cpu').

MD outputs are saved to the ASE trajectory file, to visualize the MD trajectory and magnetic moments after the MD run:

from ase.io.trajectory import Trajectory
from pymatgen.io.ase import AseAtomsAdaptor
from chgnet.utils import solve_charge_by_mag

traj = Trajectory("md_out.traj")
mag = traj[-1].get_magnetic_moments()

# get the non-charge-decorated structure
structure = AseAtomsAdaptor.get_structure(traj[-1])
print(structure)

# get the charge-decorated structure
struct_with_chg = solve_charge_by_mag(structure)
print(struct_with_chg)

To manipulate the MD trajectory, convert to other data formats, calculate mean square displacement, etc, please refer to ASE trajectory documentation.

Structure Optimization

CHGNet can perform fast structure optimization and provide site-wise magnetic moments. This makes it ideal for pre-relaxation and MAGMOM initialization in spin-polarized DFT.

from chgnet.model import StructOptimizer

relaxer = StructOptimizer()
result = relaxer.relax(structure)
print("CHGNet relaxed structure", result["final_structure"])
print("relaxed total energy in eV:", result['trajectory'].energies[-1])

Available Weights

CHGNet 0.3.0 is released with new pretrained weights! (release date: 10/22/23)

CHGNet.load() now loads 0.3.0 by default, previous 0.2.0 version can be loaded with CHGNet.load('0.2.0')

Model Training / Fine-tune

Fine-tuning will help achieve better accuracy if a high-precision study is desired. To train/tune a CHGNet, you need to define your data in a pytorch Dataset object. The example datasets are provided in data/dataset.py

from chgnet.data.dataset import StructureData, get_train_val_test_loader
from chgnet.trainer import Trainer

dataset = StructureData(
    structures=list_of_structures,
    energies=list_of_energies,
    forces=list_of_forces,
    stresses=list_of_stresses,
    magmoms=list_of_magmoms,
)
train_loader, val_loader, test_loader = get_train_val_test_loader(
    dataset, batch_size=32, train_ratio=0.9, val_ratio=0.05
)
trainer = Trainer(
    model=chgnet,
    targets="efsm",
    optimizer="Adam",
    criterion="MSE",
    learning_rate=1e-2,
    epochs=50,
    use_device="cuda",
)

trainer.train(train_loader, val_loader, test_loader)

Notes for Training

Check fine-tuning example notebook

  1. The target quantity used for training should be energy/atom (not total energy) if you're fine-tuning the pretrained CHGNet.
  2. The pretrained dataset of CHGNet comes from GGA+U DFT with MaterialsProject2020Compatibility corrections applied. The parameter for VASP is described in MPRelaxSet. If you're fine-tuning with MPRelaxSet, it is recommended to apply the MP2020 compatibility to your energy labels so that they're consistent with the pretrained dataset.
  3. If you're fine-tuning to functionals other than GGA, we recommend you refit the AtomRef.
  4. CHGNet stress is in units of GPa, and the unit conversion has already been included in dataset.py. So VASP stress can be directly fed to StructureData
  5. To save time from graph conversion step for each training, we recommend you use GraphData defined in dataset.py, which reads graphs directly from saved directory. To create saved graphs, see examples/make_graphs.py.

MPtrj Dataset

The Materials Project trajectory (MPtrj) dataset used to pretrain CHGNet is available at figshare.

The MPtrj dataset consists of all the GGA/GGA+U DFT calculations from the September 2022 Materials Project. By using the MPtrj dataset, users agree to abide the Materials Project terms of use.

Reference

If you use CHGNet or MPtrj dataset, please cite this paper:

@article{deng_2023_chgnet,
    title={CHGNet as a pretrained universal neural network potential for charge-informed atomistic modelling},
    DOI={10.1038/s42256-023-00716-3},
    journal={Nature Machine Intelligence},
    author={Deng, Bowen and Zhong, Peichen and Jun, KyuJung and Riebesell, Janosh and Han, Kevin and Bartel, Christopher J. and Ceder, Gerbrand},
    year={2023},
    pages={1–11}
}

Development & Bugs

CHGNet is under active development, if you encounter any bugs in installation and usage, please open an issue. We appreciate your contributions!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

chgnet-0.4.0.tar.gz (8.8 MB view details)

Uploaded Source

Built Distributions

chgnet-0.4.0-cp312-cp312-win_amd64.whl (8.8 MB view details)

Uploaded CPython 3.12 Windows x86-64

chgnet-0.4.0-cp312-cp312-win32.whl (8.8 MB view details)

Uploaded CPython 3.12 Windows x86

chgnet-0.4.0-cp312-cp312-musllinux_1_2_x86_64.whl (9.3 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

chgnet-0.4.0-cp312-cp312-musllinux_1_2_i686.whl (9.3 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ i686

chgnet-0.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

chgnet-0.4.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (9.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

chgnet-0.4.0-cp312-cp312-macosx_10_9_universal2.whl (8.9 MB view details)

Uploaded CPython 3.12 macOS 10.9+ universal2 (ARM64, x86-64)

chgnet-0.4.0-cp311-cp311-win_amd64.whl (8.8 MB view details)

Uploaded CPython 3.11 Windows x86-64

chgnet-0.4.0-cp311-cp311-win32.whl (8.8 MB view details)

Uploaded CPython 3.11 Windows x86

chgnet-0.4.0-cp311-cp311-musllinux_1_2_x86_64.whl (9.3 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

chgnet-0.4.0-cp311-cp311-musllinux_1_2_i686.whl (9.3 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ i686

chgnet-0.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

chgnet-0.4.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (9.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

chgnet-0.4.0-cp311-cp311-macosx_10_9_universal2.whl (8.9 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

chgnet-0.4.0-cp310-cp310-win_amd64.whl (8.8 MB view details)

Uploaded CPython 3.10 Windows x86-64

chgnet-0.4.0-cp310-cp310-win32.whl (8.8 MB view details)

Uploaded CPython 3.10 Windows x86

chgnet-0.4.0-cp310-cp310-musllinux_1_2_x86_64.whl (9.3 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

chgnet-0.4.0-cp310-cp310-musllinux_1_2_i686.whl (9.3 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ i686

chgnet-0.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

chgnet-0.4.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (9.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

chgnet-0.4.0-cp310-cp310-macosx_10_9_universal2.whl (8.9 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

File details

Details for the file chgnet-0.4.0.tar.gz.

File metadata

  • Download URL: chgnet-0.4.0.tar.gz
  • Upload date:
  • Size: 8.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for chgnet-0.4.0.tar.gz
Algorithm Hash digest
SHA256 1683fd61dbbf2ccb6540b6967589f25b239951b94c4b616f1dbbc3bce8313785
MD5 c48a6fedde8acafa73405bf65d140c14
BLAKE2b-256 f6051aaaecfaf9567dc93f33cd94a6deda0cc8ca0e665484636d8522978658d6

See more details on using hashes here.

File details

Details for the file chgnet-0.4.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: chgnet-0.4.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 8.8 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for chgnet-0.4.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 c3e9de894d86f46cff1d66a089987d64dfc20ded59e3f811f7bb3ecf9e5e123d
MD5 fd334d1f0a3771b2ca969acdd12175c5
BLAKE2b-256 ead279e86ded321c762b37ac21d9ef12ccf109a11f7be5c5f6d1bf0cacbc35ba

See more details on using hashes here.

File details

Details for the file chgnet-0.4.0-cp312-cp312-win32.whl.

File metadata

  • Download URL: chgnet-0.4.0-cp312-cp312-win32.whl
  • Upload date:
  • Size: 8.8 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for chgnet-0.4.0-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 5ca5e2f4432a789443585545b726e6b0df861942e6e909e3b14f29c31837d3a8
MD5 9c184786a0f7ec61c4eae51e17d07d91
BLAKE2b-256 936a366e4dbcd0a140635b3a889dd7517f9dff73948fbb7879bd5a3f65997e65

See more details on using hashes here.

File details

Details for the file chgnet-0.4.0-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for chgnet-0.4.0-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 235ac6fbf565bdb9c1a54c5f06625977a45797ce0d15cc4bcf13dcd52673ce1f
MD5 65e9bb9e25d49a676a5f5aa1b7ddf522
BLAKE2b-256 250163594c4b8ecf68fd66604cc530d46c55f85bf89e4f8822636c0401192e8e

See more details on using hashes here.

File details

Details for the file chgnet-0.4.0-cp312-cp312-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for chgnet-0.4.0-cp312-cp312-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 dd0b927ddee05faac59251fb23fd58ed78e846c0f52fd2f642b59a58021ada0c
MD5 f5fbc2356925015e607d5414c7a26898
BLAKE2b-256 4419c4b424b71c1662abecff0bee049186a6cfc15906b188e492a8b5d3bc49b9

See more details on using hashes here.

File details

Details for the file chgnet-0.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for chgnet-0.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8b26ca70451489c7e392b9c294b11517ae07c679fd3308548ed2a8b5ad1c9a11
MD5 5a6868e5ecc32d17e3587c19c1dfbea1
BLAKE2b-256 0d34c1cdb90b1bd5a884c154eb4195e23771be959f27bdcad0414a5e4e837f41

See more details on using hashes here.

File details

Details for the file chgnet-0.4.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for chgnet-0.4.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 8d57b1d6c29e31bd4d840158cbc14fd73f37e8f33f91e45b35c257c48168db6e
MD5 d68c6ec58c240e7cb38e6c16dfad092c
BLAKE2b-256 aeb9e7d02f291e9e2f47988c409197bf382e9d1227f50c9d88a0ddf42117925f

See more details on using hashes here.

File details

Details for the file chgnet-0.4.0-cp312-cp312-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for chgnet-0.4.0-cp312-cp312-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 7458b55c6444850ab1713cea42ee371a418898f5df13d51b57dd47183616d3fa
MD5 d909b022cc438f6ab8ef81069c562e63
BLAKE2b-256 ca59307a31cf4786a3baca7cabb311766a0a3ec15295ef32c2a724d89a0d9980

See more details on using hashes here.

File details

Details for the file chgnet-0.4.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: chgnet-0.4.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 8.8 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for chgnet-0.4.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 25b8230e3df68c3b1c77810588e2630f563f36eee81979a9eea110adb92ed3a6
MD5 ef5955f37b7954264dc1d865daac8d03
BLAKE2b-256 236c6bf740b42ddeaaa89dff870a72665c537051869e619cbed60aa76a2767c8

See more details on using hashes here.

File details

Details for the file chgnet-0.4.0-cp311-cp311-win32.whl.

File metadata

  • Download URL: chgnet-0.4.0-cp311-cp311-win32.whl
  • Upload date:
  • Size: 8.8 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for chgnet-0.4.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 dab2390fd8046910bac5e8726d921afa696fa40eb477550c990d157a6ce59e3d
MD5 824c8e12715b697c3814618b7134e173
BLAKE2b-256 031a25a165d2796cf2dd3f6b3ded13aca3bdd978d707712fe15c1d7a7caf32ff

See more details on using hashes here.

File details

Details for the file chgnet-0.4.0-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for chgnet-0.4.0-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 b8f58d07dca2cca1ec3d2759030fcdfc04a3f5ea48a5f39d1bb4f98d9f7d32ae
MD5 c57e1f9e77ef749934f7abbcd5b28f1d
BLAKE2b-256 682c4e616a4d9daa38c6a51e135008368bbba9651ca682c1673963e061e12e46

See more details on using hashes here.

File details

Details for the file chgnet-0.4.0-cp311-cp311-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for chgnet-0.4.0-cp311-cp311-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 4594772e9c87f0c4c75941b2b4fbe992ae11bb30e28264e6b93fd614191fd761
MD5 e7cf89b1ffba0cd1f82cfe38f83ecb5f
BLAKE2b-256 ca68d8d87e673a9de9182db5b5f0fbca70c8b021aa07a0077c534e185e873b39

See more details on using hashes here.

File details

Details for the file chgnet-0.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for chgnet-0.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bc1b03d4d392775afc69745924317e114d6a4c5f3a7ac221f17092fe0cdaaaf7
MD5 ef80a30d35a9600f3fc258fcf68e3c9d
BLAKE2b-256 199572eced00dc2535ad60f825469fb2bd3a3ed8671fa492eae0b0c158e14dea

See more details on using hashes here.

File details

Details for the file chgnet-0.4.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for chgnet-0.4.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 aaa50d5d51ced9d9b4e3144fa441c441f3245284d1e0ec1f3577472436316c11
MD5 b7ecdee7786727f6ad1907200c2415e9
BLAKE2b-256 418cdd5ee202939bd3e088d2beb4313da21b05356ebb23a9f25ed5b85b246c0f

See more details on using hashes here.

File details

Details for the file chgnet-0.4.0-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for chgnet-0.4.0-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 95026262d4ad7a27ff996cf8bd7e53bfe98beacad8cb24e5a35d09cd7a507763
MD5 e0363c7dfbf42afa55760b7d98f216c1
BLAKE2b-256 0929cd527fc388ceed95cb9b785303721dfe136ea2f0d438a3d24aa26db6a47a

See more details on using hashes here.

File details

Details for the file chgnet-0.4.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: chgnet-0.4.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 8.8 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for chgnet-0.4.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 c355bca4c7ba3895df048d75f75b7380a07470e394237203dc7ecdb6c7cf4bc2
MD5 5980685a636c82176a3fe1e219b3051d
BLAKE2b-256 4207d2c5212d10e9fcac6e2b3802b72ab1512fb73664dc859f42ebcfd8103d8b

See more details on using hashes here.

File details

Details for the file chgnet-0.4.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: chgnet-0.4.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 8.8 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for chgnet-0.4.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 8b464ee9ba49a6abb8b3789fa7549a2e67bbabc257e66dbe922723c91e05f8b9
MD5 d7b39c4d4ae1f20c7f55a0138ee2f76c
BLAKE2b-256 b640a6df6380a2721e3c1094a445960ae2fb12f9b64b7390742a6447600e2d0b

See more details on using hashes here.

File details

Details for the file chgnet-0.4.0-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for chgnet-0.4.0-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 37879736c55b13c88614f4c2e773d04e2d278a16348ebd9d962a6df9928ad265
MD5 f7af323238c0eb67d17a0936b018c330
BLAKE2b-256 6ad39db7f1f68a553f8d77753e901ae6b97c4d71b2513bc8ce89bff384e8e5a1

See more details on using hashes here.

File details

Details for the file chgnet-0.4.0-cp310-cp310-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for chgnet-0.4.0-cp310-cp310-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 37a0459b50161fd7b2eab385daea48e2a8a562d85096c25d0d0ac2915c2b7f88
MD5 624dd944c6d8d2ed28a7feb02d8eb95f
BLAKE2b-256 0130378a7002c4923b2f7da8f79d83cb889ba819999457aaaffaa60c1c70f8e1

See more details on using hashes here.

File details

Details for the file chgnet-0.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for chgnet-0.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 054d548be08ae57194641976ac64163f71f6d958494f98da274ee9576859d59c
MD5 867a0e960a099b378c02ca0a46592e28
BLAKE2b-256 5f084e26d7ab59020ae5be8b7b70154e08c68205364832b7932949b432de8c79

See more details on using hashes here.

File details

Details for the file chgnet-0.4.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for chgnet-0.4.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 cac302cfc70ce3d02ce17ebd1eed570306283ab1b1824cb98e5cdeb8917f99b2
MD5 802a913a10dc6917bd1af50973b6b7aa
BLAKE2b-256 b3950438d9c72bccb394e33cdb9a8cff189e3753cea1b185c8ba579e7c50be4c

See more details on using hashes here.

File details

Details for the file chgnet-0.4.0-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for chgnet-0.4.0-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 e0c6f8bac1a0b3b469264dd9d2813b0ec69bff9c610955069612a612122999eb
MD5 d6355349f060b5f44e458f528e90d33d
BLAKE2b-256 47b903da4ead85cc9538d9d4db77f8d2e1919f2ec78966987a73a6f617120865

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page