Skip to main content

Concept Hierarchies for Incremental and Active Learning

Project description

CHIA: Concept Hierarchies for Incremental and Active Learning

PyPI PyPI - License PyPI - Python Version Code Climate maintainability codecov

CHIA is a collection of methods and helper functions centered around hierarchical classification in a lifelong learning environment. It forms the basis for some of the experiments and tools developed at Computer Vision Group Jena.

Requirements

CHIA depends on:

  • python-configuration == 0.7.1
  • nltk ~= 3.5
  • imageio ~= 2.6
  • pillow ~= 7.1.0
  • gputil ~= 1.4.0
  • networkx ~= 2.4
  • numpy ~= 1.18.5
  • tensorflow-addons == 0.11.1
  • tensorflow == 2.3.0

Optional dependencies:

  • tables ~= 3.6.1
  • pandas ~= 1.0.4
  • sacred ~= 0.8.1
  • pyqt5 ~= 5.15.0
  • scikit-image ~= 0.17.2
  • scikit-learn ~= 0.23.1
  • scipy == 1.4.1
  • matplotlib ~= 3.2.1

Installation

To install, simply run:

pip install chia

or clone this repository, and run:

pip install -U pip setuptools
python setup.py develop

We also include the shell script quick-venv.sh, which creates a virtual environment and install CHIA for you.

Getting Started

To run the example experiment which makes sure that everything works, use the following command:

python examples/experiment.py examples/configuration.json

After a few minutes, the last lines of output should look like this:

[DEBUG] [ExceptionShroud]: Leaving exception shroud without exception
[SHUTDOWN] [Experiment] Successful: True

Citation

If you use CHIA for your research, kindly cite:

Brust, C. A., & Denzler, J. (2019, November). Integrating domain knowledge: using hierarchies to improve deep classifiers. In Asian Conference on Pattern Recognition (pp. 3-16). Springer, Cham.

You can refer to the following BibTeX:

@inproceedings{Brust2019IDK,
author = {Clemens-Alexander Brust and Joachim Denzler},
booktitle = {Asian Conference on Pattern Recognition (ACPR)},
title = {Integrating Domain Knowledge: Using Hierarchies to Improve Deep Classifiers},
year = {2019},
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

chia-2.0.0.tar.gz (63.2 kB view details)

Uploaded Source

Built Distribution

chia-2.0.0-py3-none-any.whl (84.4 kB view details)

Uploaded Python 3

File details

Details for the file chia-2.0.0.tar.gz.

File metadata

  • Download URL: chia-2.0.0.tar.gz
  • Upload date:
  • Size: 63.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.53.0 CPython/3.9.0

File hashes

Hashes for chia-2.0.0.tar.gz
Algorithm Hash digest
SHA256 36ec18dff53f879ad18ece71961e876a54bb05e8436fbca02c0f5fcf959ceb33
MD5 377e451c9a67ddaa1ba35508bd3981e3
BLAKE2b-256 a92b5df1b41f8e5b44b11187c18929c2a81c9473a5d893a578cfee19ec526fb2

See more details on using hashes here.

File details

Details for the file chia-2.0.0-py3-none-any.whl.

File metadata

  • Download URL: chia-2.0.0-py3-none-any.whl
  • Upload date:
  • Size: 84.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.53.0 CPython/3.9.0

File hashes

Hashes for chia-2.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 bb0644c86f2b01e8bcdc622eb5a26e1f72fcdcde322a04f0d204b8714eb20a8a
MD5 bd9bc71f88f1c1066ecfe2b22d3dc211
BLAKE2b-256 55ce8a0799bdf4b64d16e37e018ed16968753195ae4da8bdccff97493d474ff7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page