Skip to main content

Concept Hierarchies for Incremental and Active Learning

Project description

CHIA: Concept Hierarchies for Incremental and Active Learning

PyPI PyPI - License PyPI - Python Version Code Climate maintainability codecov

CHIA is a collection of methods and helper functions centered around hierarchical classification in a lifelong learning environment. It forms the basis for some of the experiments and tools developed at Computer Vision Group Jena.

Requirements

CHIA depends on:

  • python-configuration ~= 0.7
  • nltk ~= 3.5
  • imageio ~= 2.6
  • pillow ~= 7.1.0
  • gputil ~= 1.4.0
  • networkx ~= 2.4
  • numpy ~= 1.18.5
  • tensorflow-addons == 0.11.1
  • tensorflow == 2.3.0

Optional dependencies:

  • tables ~= 3.6.1
  • pandas ~= 1.0.4
  • sacred ~= 0.8.1
  • pyqt5 ~= 5.15.0
  • scikit-image ~= 0.17.2
  • scikit-learn ~= 0.23.1
  • scipy == 1.4.1
  • matplotlib ~= 3.2.1

Installation

To install, simply run:

pip install chia

or clone this repository, and run:

pip install -U pip setuptools
python setup.py develop

We also include the shell script quick-venv.sh, which creates a virtual environment and install CHIA for you.

Getting Started

To run the example experiment which makes sure that everything works, use the following command:

python examples/experiment.py examples/configuration.json

After a few minutes, the last lines of output should look like this:

[DEBUG] [ExceptionShroud]: Leaving exception shroud without exception
[SHUTDOWN] [Experiment] Successful: True

Citation

If you use CHIA for your research, kindly cite:

Brust, C. A., & Denzler, J. (2019, November). Integrating domain knowledge: using hierarchies to improve deep classifiers. In Asian Conference on Pattern Recognition (pp. 3-16). Springer, Cham.

You can refer to the following BibTeX:

@inproceedings{Brust2019IDK,
author = {Clemens-Alexander Brust and Joachim Denzler},
booktitle = {Asian Conference on Pattern Recognition (ACPR)},
title = {Integrating Domain Knowledge: Using Hierarchies to Improve Deep Classifiers},
year = {2019},
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

chia-2.0rc13.tar.gz (65.9 kB view details)

Uploaded Source

Built Distribution

chia-2.0rc13-py3-none-any.whl (87.2 kB view details)

Uploaded Python 3

File details

Details for the file chia-2.0rc13.tar.gz.

File metadata

  • Download URL: chia-2.0rc13.tar.gz
  • Upload date:
  • Size: 65.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.50.0 CPython/3.8.5

File hashes

Hashes for chia-2.0rc13.tar.gz
Algorithm Hash digest
SHA256 f9e121ec5b394f3389bd6a624fe31cd02d46423ab28fd58c4526b8e6f3219a3e
MD5 ae362373b70e70f84e55585c43e7ccb7
BLAKE2b-256 ee8f9e5f5b6bab8ee46f03572e59b73c0261741e734c67c5e01c36f2cc624e21

See more details on using hashes here.

File details

Details for the file chia-2.0rc13-py3-none-any.whl.

File metadata

  • Download URL: chia-2.0rc13-py3-none-any.whl
  • Upload date:
  • Size: 87.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.50.0 CPython/3.8.5

File hashes

Hashes for chia-2.0rc13-py3-none-any.whl
Algorithm Hash digest
SHA256 223f747a546fa214905aacb0840f0c5eb9efa7447a9f316f9d7a1e9ee3b1b69c
MD5 24758087747ea12977794f2c517aefdb
BLAKE2b-256 f0a1d021691c2ea0373b46be8652545ea6904ac5d0de557ec650bc3557e1edd0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page