Skip to main content

Concept Hierarchies for Incremental and Active Learning

Project description

CHIA: Concept Hierarchies for Incremental and Active Learning

PyPI PyPI - License PyPI - Python Version Code Climate maintainability

CHIA is a collection of methods and helper functions centered around hierarchical classification in a lifelong learning environment. It forms the basis for some of the experiments and tools developed at Computer Vision Group Jena.

Requirements

CHIA depends on:

  • python-configuration ~= 0.7
  • nltk ~= 3.5
  • imageio ~= 2.6
  • pillow ~= 7.1.0
  • gputil ~= 1.4.0
  • networkx ~= 2.4
  • numpy ~= 1.18.5
  • tensorflow-addons == 0.11.1
  • tensorflow == 2.3.0

Optional dependencies:

  • tables ~= 3.6.1
  • pandas ~= 1.0.4
  • sacred ~= 0.8.1
  • pyqt5 ~= 5.15.0
  • scikit-image ~= 0.17.2
  • scikit-learn ~= 0.23.1
  • scipy == 1.4.1
  • matplotlib ~= 3.2.1

Installation

To install, simply run:

pip install chia

or clone this repository, and run:

pip install -U pip setuptools
python setup.py develop

We also include the shell script quick-venv.sh, which will create a virtual environment and install CHIA for you.

Citation

If you use CHIA for your research, kindly cite:

Brust, C. A., & Denzler, J. (2019, November). Integrating domain knowledge: using hierarchies to improve deep classifiers. In Asian Conference on Pattern Recognition (pp. 3-16). Springer, Cham.

You can refer to the following BibTeX:

@inproceedings{Brust2019IDK,
author = {Clemens-Alexander Brust and Joachim Denzler},
booktitle = {Asian Conference on Pattern Recognition (ACPR)},
title = {Integrating Domain Knowledge: Using Hierarchies to Improve Deep Classifiers},
year = {2019},
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

chia-2.0rc3.tar.gz (60.9 kB view details)

Uploaded Source

Built Distribution

chia-2.0rc3-py3-none-any.whl (80.9 kB view details)

Uploaded Python 3

File details

Details for the file chia-2.0rc3.tar.gz.

File metadata

  • Download URL: chia-2.0rc3.tar.gz
  • Upload date:
  • Size: 60.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.5

File hashes

Hashes for chia-2.0rc3.tar.gz
Algorithm Hash digest
SHA256 0097850b911df55f51561c35bebf277e9b772c12e93e4d8793bfc17b5f8be615
MD5 7f2e8cb5a7ee918943005bb75e368e99
BLAKE2b-256 0db10b37ce03a95da61918959b7af537e600fdaa129d37f7bd4e1e81a6857f5b

See more details on using hashes here.

File details

Details for the file chia-2.0rc3-py3-none-any.whl.

File metadata

  • Download URL: chia-2.0rc3-py3-none-any.whl
  • Upload date:
  • Size: 80.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.5

File hashes

Hashes for chia-2.0rc3-py3-none-any.whl
Algorithm Hash digest
SHA256 6afff174afd8a894b78504769f5b57d17328975290b637e88b5039fa9be7e025
MD5 563bd6e9723ca1c39041e76be169e266
BLAKE2b-256 488443d626a3f1f353c083da74532f96950d2ef544647e246785b2deaf2f757d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page