Skip to main content

Concept Hierarchies for Incremental and Active Learning

Project description

CHIA: Concept Hierarchies for Incremental and Active Learning

PyPI PyPI - License PyPI - Python Version Code Climate maintainability codecov

CHIA is a collection of methods and helper functions centered around hierarchical classification in a lifelong learning environment. It forms the basis for some of the experiments and tools developed at Computer Vision Group Jena.

Requirements

CHIA depends on:

  • python-configuration == 0.7.1
  • nltk ~= 3.5
  • imageio ~= 2.6
  • pillow ~= 7.1.0
  • gputil ~= 1.4.0
  • networkx ~= 2.4
  • numpy ~= 1.18.5
  • tensorflow-addons == 0.11.1
  • tensorflow == 2.3.0

Optional dependencies:

  • tables ~= 3.6.1
  • pandas ~= 1.0.4
  • sacred ~= 0.8.1
  • pyqt5 ~= 5.15.0
  • scikit-image ~= 0.17.2
  • scikit-learn ~= 0.23.1
  • scipy == 1.4.1
  • matplotlib ~= 3.2.1

Installation

To install, simply run:

pip install chia

or clone this repository, and run:

pip install -U pip setuptools
python setup.py develop

We also include the shell script quick-venv.sh, which creates a virtual environment and install CHIA for you.

Getting Started

To run the example experiment which makes sure that everything works, use the following command:

python examples/experiment.py examples/configuration.json

After a few minutes, the last lines of output should look like this:

[DEBUG] [ExceptionShroud]: Leaving exception shroud without exception
[SHUTDOWN] [Experiment] Successful: True

Citation

If you use CHIA for your research, kindly cite:

Brust, C. A., & Denzler, J. (2019, November). Integrating domain knowledge: using hierarchies to improve deep classifiers. In Asian Conference on Pattern Recognition (pp. 3-16). Springer, Cham.

You can refer to the following BibTeX:

@inproceedings{Brust2019IDK,
author = {Clemens-Alexander Brust and Joachim Denzler},
booktitle = {Asian Conference on Pattern Recognition (ACPR)},
title = {Integrating Domain Knowledge: Using Hierarchies to Improve Deep Classifiers},
year = {2019},
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

chia-2.1.2.tar.gz (64.1 kB view details)

Uploaded Source

Built Distribution

chia-2.1.2-py3-none-any.whl (85.8 kB view details)

Uploaded Python 3

File details

Details for the file chia-2.1.2.tar.gz.

File metadata

  • Download URL: chia-2.1.2.tar.gz
  • Upload date:
  • Size: 64.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.2

File hashes

Hashes for chia-2.1.2.tar.gz
Algorithm Hash digest
SHA256 8ea06e266b3470e14cbf567b83ad36aa6dfb23fe12110fd3ebeb129d054db2d0
MD5 ea5d8ca750a79d8cd5c650bc54ae32d0
BLAKE2b-256 b20d459a5f27a19f73d96fffdcbb801f50f1d0432270266419ec100e920d4d61

See more details on using hashes here.

File details

Details for the file chia-2.1.2-py3-none-any.whl.

File metadata

  • Download URL: chia-2.1.2-py3-none-any.whl
  • Upload date:
  • Size: 85.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.2

File hashes

Hashes for chia-2.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 8cb90f8f262c79999eb457ecc913b3ed177298d508d3ed5adb443f4ac29d400e
MD5 47a40db9edd572a464b2bddb36896f92
BLAKE2b-256 37ef31c13a10c4a1f1fe344a3591a7c30c195de34ed51ab46259f5baca7d2f33

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page