Skip to main content

Concept Hierarchies for Incremental and Active Learning

Project description

CHIA: Concept Hierarchies for Incremental and Active Learning

PyPI PyPI - License PyPI - Python Version Code Climate maintainability codecov

CHIA is a collection of methods and helper functions centered around hierarchical classification in a lifelong learning environment. It forms the basis for some of the experiments and tools developed at Computer Vision Group Jena.

Methods

CHIA implements:

  • One-Hot Classifier
  • Probabilistic Hierarchical Classifier Brust, C. A., & Denzler, J. (2019, November). Integrating domain knowledge: using hierarchies to improve deep classifiers. In Asian Conference on Pattern Recognition (pp. 3-16). Springer, Cham.
  • Semantic Label Sharing Fergus, R., Bernal, H., Weiss, Y., & Torralba, A. (2010, September). Semantic label sharing for learning with many categories. In European Conference on Computer Vision (pp. 762-775). Springer, Berlin, Heidelberg.

Datasets

The following datasets are integrated into CHIA:

  • CORe50
  • CUB200-2011
  • (i)CIFAR-100
  • ImageNet ILSVRC2012
  • NABirds

Requirements

CHIA depends on:

  • python-configuration == 0.7.1
  • nltk ~= 3.5
  • imageio ~= 2.6
  • pillow ~= 7.1.0
  • gputil ~= 1.4.0
  • networkx ~= 2.4
  • numpy ~= 1.18.5
  • tensorflow-addons == 0.11.1
  • tensorflow == 2.3.0

Optional dependencies:

  • tables ~= 3.6.1
  • pandas ~= 1.0.4
  • sacred ~= 0.8.1
  • pyqt5 ~= 5.15.0
  • scikit-image ~= 0.17.2
  • scikit-learn ~= 0.23.1
  • scipy == 1.4.1
  • matplotlib ~= 3.2.1

Installation

To install, simply run:

pip install chia

or clone this repository, and run:

pip install -U pip setuptools
python setup.py develop

We also include the shell script quick-venv.sh, which creates a virtual environment and install CHIA for you.

Getting Started

To run the example experiment which makes sure that everything works, use the following command:

python examples/experiment.py examples/configuration.json

After a few minutes, the last lines of output should look like this:

[DEBUG] [ExceptionShroud]: Leaving exception shroud without exception
[SHUTDOWN] [Experiment] Successful: True

Citation

If you use CHIA for your research, kindly cite:

Brust, C. A., & Denzler, J. (2019, November). Integrating domain knowledge: using hierarchies to improve deep classifiers. In Asian Conference on Pattern Recognition (pp. 3-16). Springer, Cham.

You can refer to the following BibTeX:

@inproceedings{Brust2019IDK,
author = {Clemens-Alexander Brust and Joachim Denzler},
booktitle = {Asian Conference on Pattern Recognition (ACPR)},
title = {Integrating Domain Knowledge: Using Hierarchies to Improve Deep Classifiers},
year = {2019},
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

chia-2.3.1.tar.gz (67.1 kB view details)

Uploaded Source

Built Distribution

chia-2.3.1-py3-none-any.whl (90.7 kB view details)

Uploaded Python 3

File details

Details for the file chia-2.3.1.tar.gz.

File metadata

  • Download URL: chia-2.3.1.tar.gz
  • Upload date:
  • Size: 67.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for chia-2.3.1.tar.gz
Algorithm Hash digest
SHA256 042c99b35df81df3828ecda3f7a021bbf6f512ceadfbddc8816b9cef43c39802
MD5 5eeed11b52771a4674e5fbc92ed5a8df
BLAKE2b-256 4ae558eab89ae266e95e5703594d69c8e974c0577d609a0aab5ca0f59b6f8365

See more details on using hashes here.

File details

Details for the file chia-2.3.1-py3-none-any.whl.

File metadata

  • Download URL: chia-2.3.1-py3-none-any.whl
  • Upload date:
  • Size: 90.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for chia-2.3.1-py3-none-any.whl
Algorithm Hash digest
SHA256 d32e87337a76af85023837f73a4e769b66614a6f1fd28fcd1da6243ab671b27b
MD5 3f26c653f37054d31848819cea45cc9f
BLAKE2b-256 a1a46199c9f9072c10b4047495af0d82024d569706af176a1ac005204c05ea24

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page