Skip to main content

Concept Hierarchies for Incremental and Active Learning

Project description

CHIA: Concept Hierarchies for Incremental and Active Learning

PyPI PyPI - License PyPI - Python Version Code Climate maintainability codecov

CHIA is a collection of methods and helper functions centered around hierarchical classification in a lifelong learning environment. It forms the basis for some of the experiments and tools developed at Computer Vision Group Jena.

Methods

CHIA implements:

  • One-Hot Classifier as a baseline.
  • Probabilistic Hierarchical Classifier Brust, C. A., & Denzler, J. (2019, November). Integrating domain knowledge: using hierarchies to improve deep classifiers. In Asian Conference on Pattern Recognition (ACPR) (pp. 3-16). Springer, Cham.
  • CHILLAX Brust, C. A., Barz, B., & Denzler, J. (2021, January). Making Every Label Count: Handling Semantic Imprecision by Integrating Domain Knowledge. In 2020 25th International Conference on Pattern Recognition (ICPR) (pp. 6866-6873). IEEE.
  • Self-Supervised CHILLAX Brust, C. A., Barz, B., & Denzler, J. (2021, April). Self-Supervised Learning from Semantically Imprecise Data. arXiv preprint arXiv:2104.10901.
  • Semantic Label Sharing Fergus, R., Bernal, H., Weiss, Y., & Torralba, A. (2010, September). Semantic label sharing for learning with many categories. In European Conference on Computer Vision (pp. 762-775). Springer, Berlin, Heidelberg.

Datasets

The following datasets are integrated into CHIA:

  • CORe50
  • CUB200-2011
  • (i)CIFAR-100
  • ImageNet ILSVRC2012
  • NABirds

Requirements

CHIA depends on:

  • python-configuration == 0.7.1
  • nltk ~= 3.5
  • imageio ~= 2.6
  • pillow ~= 8.0
  • gputil ~= 1.4.0
  • networkx ~= 2.4
  • numpy ~= 1.19.2
  • tensorflow-addons == 0.14.0
  • tensorflow == 2.6.0

Installation

To install, simply run:

pip install chia

or clone this repository, and run:

pip install -U pip setuptools
python setup.py develop

We also include the shell script quick-venv.sh, which creates a virtual environment and install CHIA for you.

Getting Started

To run the example experiment which makes sure that everything works, use the following command:

python examples/experiment.py examples/configuration.json

After a few minutes, the last lines of output should look like this:

[DEBUG] [ExceptionShroud]: Leaving exception shroud without exception
[SHUTDOWN] [Experiment] Successful: True

Citation

If you use CHIA for your research, kindly cite:

Brust, C. A., & Denzler, J. (2019, November). Integrating domain knowledge: using hierarchies to improve deep classifiers. In Asian Conference on Pattern Recognition (pp. 3-16). Springer, Cham.

You can refer to the following BibTeX:

@inproceedings{Brust2019IDK,
author = {Clemens-Alexander Brust and Joachim Denzler},
booktitle = {Asian Conference on Pattern Recognition (ACPR)},
title = {Integrating Domain Knowledge: Using Hierarchies to Improve Deep Classifiers},
year = {2019},
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

chia-2.4.1.tar.gz (73.8 kB view hashes)

Uploaded Source

Built Distribution

chia-2.4.1-py3-none-any.whl (102.7 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page