Skip to main content

Chia vdf verification (wraps C++)

Project description

Chia VDF

Build PyPI PyPI - Format GitHub

Total alerts Language grade: Python Language grade: C/C++

Building a wheel

Compiling chiavdf requires cmake, boost and GMP.

python3 -m venv venv
source venv/bin/activate

pip install wheel setuptools_scm pybind11
pip wheel .

The primary build process for this repository is to use GitHub Actions to build binary wheels for MacOS, Linux (x64 and aarch64), and Windows and publish them with a source wheel on PyPi. See .github/workflows/build.yml. CMake uses FetchContent to download pybind11. Building is then managed by cibuildwheel. Further installation is then available via pip install chiavdf e.g.

Building Timelord and related binaries

In addition to building the required binary and source wheels for Windows, MacOS and Linux, chiavdf can be used to compile vdf_client and vdf_bench. vdf_client is the core VDF process that completes the Proof of Time submitted to it by the Timelord. The repo also includes a benchmarking tool to get a sense of the iterations per second of a given CPU called vdf_bench. Try ./vdf_bench square_asm 250000 for an ips estimate.

To build vdf_client set the environment variable BUILD_VDF_CLIENT to "Y". export BUILD_VDF_CLIENT=Y.

Similarly, to build vdf_bench set the environment variable BUILD_VDF_BENCH to "Y". export BUILD_VDF_BENCH=Y.

This is currently automated via pip in the install-timelord.sh script in the chia-blockchain repository which depends on this repository.

If you're running a timelord, the following tests are available, depending of which type of timelord you are running:

./1weso_test, in case you're running in sanitizer_mode.

./2weso_test, in case you're running a timelord that extends the chain and you're running the slow algorithm.

./prover_test, in case you're running a timelord that extends the chain and you're running the fast algorithm.

Those tests will simulate the vdf_client and verify for correctness the produced proofs.

Contributing and workflow

Contributions are welcome and more details are available in chia-blockchain's CONTRIBUTING.md.

The master branch is the currently released latest version on PyPI. Note that at times chiavdf will be ahead of the release version that chia-blockchain requires in it's master/release version in preparation for a new chia-blockchain release. Please branch or fork master and then create a pull request to the master branch. Linear merging is enforced on master and merging requires a completed review. PRs will kick off a ci build and analysis of chiavdf at lgtm.com. Please make sure your build is passing and that it does not increase alerts at lgtm.

Background from prior VDF competitions

Copyright 2018 Ilya Gorodetskov generic@sundersoft.com

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

Our VDF construction is described in classgroup.pdf. The implementation details about squaring and proving phrases are described below.

Main VDF Loop

The main VDF loop produces repeated squarings of the generator form (i.e. calculates y(n) = g^(2^n)) as fast as possible, until the program is interrupted. Sundersoft's entry from Chia's 2nd VDF contest is used, together with the fast reducer used in Pulmark's entry. This approach is described below:

The NUDUPL algorithm is used. The equations are based on cryptoslava's equations from the 1st contest. They were modified slightly to increase the level of parallelism.

The GCD is a custom implementation with scalar integers. There are two base cases: one uses a lookup table with continued fractions and the other uses the euclidean algorithm with a division table. The division table algorithm is slightly faster even though it has about 2x as many iterations.

After the base case, there is a 128 bit GCD that generates 64 bit cofactor matricies with Lehmer's algorithm. This is required to make the long integer multiplications efficient (Flint's implementation doesn't do this).

The GCD also implements Flint's partial xgcd function, but the output is slightly different. This implementation will always return an A value which is > the threshold and a B value which is <= the threshold. For a normal GCD, the threshold is 0, B is 0, and A is the GCD. Also the interfaces are slightly different.

Scalar integers are used for the GCD. I don't expect any speedup for the SIMD integers that were used in the last implementation since the GCD only uses 64x1024 multiplications, which are too small and have too high of a carry overhead for the SIMD version to be faster. In either case, most of the time seems to be spent in the base case so it shouldn't matter too much.

If SIMD integers are used with AVX-512, doubles have to be used because the multiplier sizes for doubles are significantly larger than for integers. There is an AVX-512 extension to support larger integer multiplications but no processor implements it yet. It should be possible to do a 50 bit multiply-add into a 100 bit accumulator with 4 fused multiply-adds if the accumulators have a special nonzero initial value and the inputs are scaled before the multiplication. This would make AVX-512 about 2.5x faster than scalar code for 1024x1024 integer multiplications (assuming the scalar code is unrolled and uses ADOX/ADCX/MULX properly, and the CPU can execute this at 1 cycle per iteration which it probably can't).

The GCD is parallelized by calculating the cofactors in a separate slave thread. The master thread will calculate the cofactor matricies and send them to the slave thread. Other calculations are also parallelized.

The VDF implementation from the first contest is still used as a fallback and is called about once every 5000 iterations. The GCD will encounter large quotients about this often and these are not implemented. This has a negligible effect on performance. Also, the NUDUPL case where A<=L is not implemented; it will fall back to the old implementation in this case (this never happens outside of the first 20 or so iterations).

There is also corruption detection by calculating C with a non-exact division and making sure the remainder is 0. This detected all injected random corruptions that I tested. No corruptions caused by bugs were observed during testing. This cannot correct for the sign of B being wrong.

GCD continued fraction lookup table

The is implemented in gcd_base_continued_fractions.h and asm_gcd_base_continued_fractions.h. The division table implementation is the same as the previous entry and was discussed there. Currently the division table is only used if AVX2 is enabled but it could be ported to SSE or scalar code easily. Both implementations have about the same performance.

The initial quotient sequence of gcd(a,b) is the same as the initial quotient sequence of gcd(a*2^n/b, 2^n) for any n. This is because the GCD quotients are the same as the continued fraction quotients of a/b, and the initial continued fraction quotients only depend on the initial bits of a/b. This makes it feasible to have a lookup table since it now only has one input.

a*2^n/b is calculated by doing a double precision division of a/b, and then truncating the lower bits. Some of the exponent bits are used in the table in addition to the fraction bits; this makes each slot of the table vary in size depending on what the exponent is. If the result is outside the table bounds, then the division result is floored to fall back to the euclidean algorithm (this is very rare).

The table is calculated by iterating all of the possible continued fractions that have a certain initial quotient sequence. Iteration ends when all of these fractions are either outside the table or they don't fully contain at least one slot of the table. Each slot that is fully contained by such a fraction is updated so that its quotient sequence equals the fraction's initial quotient sequence. Once this is complete, the cofactor matricies are calculated from the quotient sequences. Each cofactor matrix is 4 doubles.

The resulting code seems to have too many instructions so it doesn't perform very well. There might be some way to optimize it. It was written for SSE so that it would run on both processors.

This might work better on an FPGA possibly with low latency DRAM or SRAM (compared to the euclidean algorithm with a division table). There is no limit to the size of the table but doubling the latency would require the number of bits in the table to also be doubled to have the same performance.

Other GCD code

The gcd_128 function calculates a 128 bit GCD using Lehmer's algorithm. It is pretty straightforward and uses only unsigned arithmetic. Each cofactor matrix can only have two possible signs: [+ -; - +] or [- +; + -]. The gcd_unsigned function uses unsigned arithmetic and a jump table to apply the 64-bit cofactor matricies to the A and B values. It uses ADOX/ADCX/MULX if they are available and falls back to ADC/MUL otherwise. It will track the last known size of A to speed up the bit shifts required to get the top 128 bits of A.

No attempt was made to try to do the A and B long integer multiplications on a separate thread; I wouldn't expect any performance improvement from this.

Threads

There is a master thread and a slave thread. The slave thread only exists for each batch of 5000 or so squarings and is then destroyed and recreated for the next batch (this has no measurable overhead). If the original VDF is used as a fallback, the batch ends and the slave thread is destroyed.

Each thread has a 64-bit counter that only it can write to. Also, during a squaring iteration, it will not overwrite any value that it has previously written and transmitted to the other thread. Each squaring is split up into phases. Each thread will update its counter at the start of the phase (the counter can only be increased, not decreased). It can then wait on the other thread's counter to reach a certain value as part of a spin loop. If the spin loop takes too long, an error condition is raised and the batch ends; this should prevent any deadlocks from happening.

No CPU fences or atomics are required since each value can only be written to by one thread and since x86 enforces acquire/release ordering on all memory operations. Compiler memory fences are still required to prevent the compiler from caching or reordering memory operations.

The GCD master thread will increment the counter when a new cofactor matrix has been outputted. The slave thread will spin on this counter and then apply the cofactor matrix to the U or V vector to get a new U or V vector.

It was attempted to use modular arithmetic to calculate k directly but this slowed down the program due to GMP's modulo or integer multiply operations not having enough performance. This also makes the integer multiplications bigger.

The speedup isn't very high since most of the time is spent in the GCD base case and these can't be parallelized.

Generating proofs

The nested wesolowski proofs (n-wesolowski) are used to check the correctness of a VDF result. (Simple) Wesolowski proofs are described in A Survey of Two Verifiable Delay Functions. In order to prove h = g^(2^T), a n-wesolowski proof uses n intermediate simple wesolowski proofs. Given h, g, T, t1, t2, ..., tn, h1, h2, ..., hn, a correct n-wesolowski proof will verify the following:

h1 = g^(2^t1)
h2 = h1^(2^t2)
h3 = h2^(2^t3)
...
hn = h(n-1)^(2^tn)

Additionally, we must have:

t1 + t2 + ... + tn = T
hn = h

The algorithm will generate at most 64-wesolowski proofs. Some intermediates wesolowski proofs are stored in parallel with the main VDF loop. The goal is to have a n-wesolowski proof almost ready as soon as the main VDF loop finishes computing h = g^(2^T), for a T that we're interested in. We'll call a segment a tuple (y, x, T) for which we're interested in a simple wesolowski proof that y = x^(2^T). We'll call a segment finished when we've finished computing its proof.

Segmenets stored

We'll store finished segments of length 2^x for x being multiples of 2 greater than or equal to 16. The current implementation limits the maximum segment size to 2^30, but this can be increased if needed. Let P = 16+2*l. After each 2^P steps calculated by the main VDF loop, we'll store a segment proving that we've correctly done the 2^P steps. Formally, let x be the form after k*2^P steps, y be the form after (k+1)*2^P steps, for each k >= 0, for each P = 16+2*l. Then, we'll store a segment (y, x, 2^P), together with a simple wesolowski proof.

Segment threads

In order to finish a segment of length T=2^P, the number of iterations to run for is T/k + l*2^(k+1) and the intermediate storage required is T/(k*l), for some parameters k and l, as described in the paper. The squarings used to finish a segment are about 2 times as slow as the ones used by the main VDF loop. Even so, finishing a segment is much faster than producing its y value by the main VDF loop. This allows, by the time the main VDF loop finishes 2^16 more steps, to perform work on finishing multiple segments.

The parameters used in finishing segments, for T=2^16, are k=10 and l=1. Above that, parameters are k=12 and l=2^(P-18). Note that, for P >= 18, the intermediate storage needed for a segment is constant (i.e. 2^18/12 forms stored in memory).

Prover class is responsible to finish a segment. It implements pause/resume functionality, so its work can be paused, and later resumed from the point it stopped. For each unfinished segment generated by the main VDF loop, a Prover instance is created, which will eventually finish the segment.

Segment threads are responsible for deciding which Prover instance is currently running. In the current implementation, there are 3 segment threads (however the number is configurable), so at most 3 Prover instances will run at once, at different threads (other Provers will be paused). The segment threads will always pick the segments with the shortest length to run. In case of a tie, the segments received the earliest will have priority. Every time a new segment arrives, or a segment gets finished, some pausing/resuming of Provers is done, if needed. Pausing is done to have at most 3 Provers running at any time, whilst resuming is done if less than 3 Provers are working, but some Provers are paused.

All the segments of lengths 2^16, 2^18 and 2^20 will be finished relatively soon after the main VDF worker produced them, while the segments of length 2^22 and upwards will lag behind the main VDF worker a little. Eventually, all the higher size segments will be finished, the work on them being done repeatedly via pausing (when a smaller size segment arrives) and resuming (when all smaller size segments are finished).

Currently, 4 more segment threads are added after the main VDF loop finishes 500 million iterations (after about 1 hour of running). This is done to be completely sure even the very big sized segments will be finished. This optimisation is only allowed on machines supporting at least 16 concurrent threads.

Generating n-wesolowski proof

Let T an iteration we are interested in. Firstly, the main VDF Loop will need to calculate at least T iterations. Then, in order to get fast a n-wesolowski proof, we'll concatenate finished segments. We want the proof to be as short as possible, so we'll always pick finished segments of the maximum length possible. If such segments aren't finished, we'll choose lower length segments. A segment of length 2^(16 + 2*p) can always be replaced with 4 segments of length 2^(16 + 2*p - 2). The proof will be created shortly after the main VDF loop produced the result, as the 2^16 length segments will always be up to date with the main VDF loop (and, at worst case, we can always concatenate 2^16 length segments, if bigger sizes are not finished yet). It's possible after the concatenation that we'll still need to prove up to 2^16 iterations (no segment is able to cover anything less than 2^16). This last work is done in parallel with the main VDF loop, as an optimisation.

The program limits the proof size to 64-wesolowski. If number of iterations is very large, it's possible the concatenation won't fit into this. In this case, the program will attempt again to prove every minute, until there are enough large segments to fit the 64-wesolowski limit. However, almost in all cases, the concatenation will fit the 64-wesolowski limit in the first try.

Since the maximum segment size is 2^30 and we can use at most 64 segments in a concatenation, the program will prove at most 2^36 iterations. This can be increased if needed.

Intermediates storage

In order to finish segments, some intermediate values need to be stored for each segment. For each different possible segment length, we use a sliding window of length 20 to store those. Hence, for each segment length, we'll store only the intermediates values needed for the last 20 segments produced by the main VDF loop. Since finishing segments is faster than producing them by the main VDF loop, we assume the segment threads won't be behind by more than 20 segments from the main VDF loop, for each segment length. Thanks to the sliding window technique, the memory used will always be constant.

Generally, the main VDF loop performs all the storing, after computing a form we're interested in. However, since storing is very frequent and expensive (GMP operations), this will slow down the main VDF loop.

For the machines having at least 16 concurrent threads, an optimization is provided: the main VDF loop does only repeated squaring, without storing any form. After each 2^15 steps are performed, a new thread starts redoing the work for 2^15 more steps, this time storing the intermediate values as well. All the intermediates threads and the main VDF loop will work in parallel. The only purpose of the main VDF loop becomes now to produce the starting values for the intermediate threads, as fast as possible. The squarings used in the intermediates threads will be 2 times slower than the ones used in the main VDF loop. It's expected the intermediates will only lag behind the main VDF loop by 2^15 iterations, at any point: after 2^16 iterations are done by the main VDF loop, the first thread doing the first 2^15 intermediate values is already finished. Also, at that point, half of the work of the second thread doing the last 2^15 intermediates values should be already done.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

chiavdf-0.14.0.tar.gz (639.0 kB view details)

Uploaded Source

Built Distributions

chiavdf-0.14.0-cp39-cp39-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.9 Windows x86-64

chiavdf-0.14.0-cp39-cp39-manylinux2014_aarch64.whl (372.8 kB view details)

Uploaded CPython 3.9

chiavdf-0.14.0-cp39-cp39-manylinux2010_x86_64.whl (450.9 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

chiavdf-0.14.0-cp39-cp39-macosx_10_14_x86_64.whl (316.7 kB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

chiavdf-0.14.0-cp39-cp39-macosx_10_14_universal2.whl (316.7 kB view details)

Uploaded CPython 3.9 macOS 10.14+ universal2 (ARM64, x86-64)

chiavdf-0.14.0-cp38-cp38-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.8 Windows x86-64

chiavdf-0.14.0-cp38-cp38-manylinux2014_aarch64.whl (372.3 kB view details)

Uploaded CPython 3.8

chiavdf-0.14.0-cp38-cp38-manylinux2010_x86_64.whl (450.8 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

chiavdf-0.14.0-cp38-cp38-macosx_10_14_x86_64.whl (316.7 kB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

chiavdf-0.14.0-cp37-cp37m-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.7m Windows x86-64

chiavdf-0.14.0-cp37-cp37m-manylinux2014_aarch64.whl (374.1 kB view details)

Uploaded CPython 3.7m

chiavdf-0.14.0-cp37-cp37m-manylinux2010_x86_64.whl (451.8 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

chiavdf-0.14.0-cp37-cp37m-macosx_10_14_x86_64.whl (316.4 kB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

File details

Details for the file chiavdf-0.14.0.tar.gz.

File metadata

  • Download URL: chiavdf-0.14.0.tar.gz
  • Upload date:
  • Size: 639.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.56.1 CPython/3.8.7

File hashes

Hashes for chiavdf-0.14.0.tar.gz
Algorithm Hash digest
SHA256 e3a160ca739bee9f4868e957ac970bbf6846ade1003c231a7d192ec4b2a884f1
MD5 49962011e5f47d381edaa22a6524b427
BLAKE2b-256 b7c7b92e6205aa4f1d244a63dcf13dc9e88fce699068a882c7b4e15ac612870d

See more details on using hashes here.

File details

Details for the file chiavdf-0.14.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: chiavdf-0.14.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.56.1 CPython/3.8.7

File hashes

Hashes for chiavdf-0.14.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 18501375d1f3b434ab5b07f17365585952589eae71981090e2f0b3a1344dd443
MD5 7d885291f70bfa22e09ba82960272a72
BLAKE2b-256 9f395104a259588c552c538ecc36fb5dfccba753e97f673808d4b0edbc139f4f

See more details on using hashes here.

File details

Details for the file chiavdf-0.14.0-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

  • Download URL: chiavdf-0.14.0-cp39-cp39-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 372.8 kB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/44.0.0 requests-toolbelt/0.9.1 tqdm/4.56.1 CPython/3.8.5

File hashes

Hashes for chiavdf-0.14.0-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 daed193550fe559af3499885fbef3c462006f07471068efb4f13e9e98508ab37
MD5 98f2869d6eab344172bd2e6fba1cc4a5
BLAKE2b-256 084422f2416e60a8f3ce6618092d68c48ea88ec8c166e71e7bf888fe710dc846

See more details on using hashes here.

File details

Details for the file chiavdf-0.14.0-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

  • Download URL: chiavdf-0.14.0-cp39-cp39-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 450.9 kB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.56.1 CPython/3.8.7

File hashes

Hashes for chiavdf-0.14.0-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 2f90398c749ce7b0b65ea97ef8d0ffabd122c326f90efdd6526f56ea75aa145d
MD5 d0eed77451a1732b2fa94b4a4c1bc93c
BLAKE2b-256 d4914b92dc127d392d55854ad3e989858d61e97a8fa1d91516bca60cfbb88362

See more details on using hashes here.

File details

Details for the file chiavdf-0.14.0-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: chiavdf-0.14.0-cp39-cp39-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 316.7 kB
  • Tags: CPython 3.9, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.56.1 CPython/3.8.7

File hashes

Hashes for chiavdf-0.14.0-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 9f56a4c89916575a3d3db3a15821a8ea9050cd3178a9456145bd1115b13307fe
MD5 fbd284438eac1865b08cb095b6204e18
BLAKE2b-256 d8b2a48e2c57fe7f330c52cb8a639bf4efbc0ef03184c58db4c43fff16b886f5

See more details on using hashes here.

File details

Details for the file chiavdf-0.14.0-cp39-cp39-macosx_10_14_universal2.whl.

File metadata

  • Download URL: chiavdf-0.14.0-cp39-cp39-macosx_10_14_universal2.whl
  • Upload date:
  • Size: 316.7 kB
  • Tags: CPython 3.9, macOS 10.14+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.56.1 CPython/3.8.7

File hashes

Hashes for chiavdf-0.14.0-cp39-cp39-macosx_10_14_universal2.whl
Algorithm Hash digest
SHA256 a906d6e805fdc59739e7d18293c690140e3dd87bfe5e7d559d2d2d940becf360
MD5 3ef9f221fef40b5a11501759c6f68e22
BLAKE2b-256 540eac1c2f782439d43b54f422707765f38c8229718cb4672f2c12940a77d980

See more details on using hashes here.

File details

Details for the file chiavdf-0.14.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: chiavdf-0.14.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.56.1 CPython/3.8.7

File hashes

Hashes for chiavdf-0.14.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 fd4c9c56498076dd536cce49bd1475e6244b1ea7aa8073bffcc2e8f3ea2ca151
MD5 bbe1419345ef5f3d11a08e00b2ae9df1
BLAKE2b-256 e3ead94c098e8f3cd236a80ecabcca13e7001fc5b1353b115b6f7568df9d9b87

See more details on using hashes here.

File details

Details for the file chiavdf-0.14.0-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

  • Download URL: chiavdf-0.14.0-cp38-cp38-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 372.3 kB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/44.0.0 requests-toolbelt/0.9.1 tqdm/4.56.1 CPython/3.8.5

File hashes

Hashes for chiavdf-0.14.0-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 876918a4fac48376814dc6dbd31c838013287fa73be18b97642da431436e64a4
MD5 87bda6f56aea036ccdf46ffa53bae532
BLAKE2b-256 b68ab72c42cb9af48f0f6cd8d91d974eaa91058f891a05761e1dd1841641ba1f

See more details on using hashes here.

File details

Details for the file chiavdf-0.14.0-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: chiavdf-0.14.0-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 450.8 kB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.56.1 CPython/3.8.7

File hashes

Hashes for chiavdf-0.14.0-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 46afce30564ab6ba926dbda026c7276da4db4c18c8ed805d1adca60522e766fb
MD5 9ddde446dc38cafeab5c528299792f1a
BLAKE2b-256 356e1f67a6f6fee9da5a3eef6d905e312247036719113ae112b2dd23be064eb2

See more details on using hashes here.

File details

Details for the file chiavdf-0.14.0-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: chiavdf-0.14.0-cp38-cp38-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 316.7 kB
  • Tags: CPython 3.8, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.56.1 CPython/3.8.7

File hashes

Hashes for chiavdf-0.14.0-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 1bea7bbbd7a531f3e5978044b3a805063b5450ca937c6c86a05ce2e23de7dcd2
MD5 d53fd9e7ad416a45099223faace92e06
BLAKE2b-256 c2d70bfaa5769008d8d787a921154c1a51a955512833b6ad0a7e0f63ffd232d9

See more details on using hashes here.

File details

Details for the file chiavdf-0.14.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: chiavdf-0.14.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.56.1 CPython/3.8.7

File hashes

Hashes for chiavdf-0.14.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 dbdfe44f5aabd2a96cd4a188997f539c1447b9b246161cd9bfbc1008c3b88098
MD5 a10ab37e6b31e723cf5efd5baa07b70d
BLAKE2b-256 d1a164ca19ba56f45dad89a1b3e892a9d5b4c93ad91691c51f7cb9320f2e0d44

See more details on using hashes here.

File details

Details for the file chiavdf-0.14.0-cp37-cp37m-manylinux2014_aarch64.whl.

File metadata

  • Download URL: chiavdf-0.14.0-cp37-cp37m-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 374.1 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/44.0.0 requests-toolbelt/0.9.1 tqdm/4.56.1 CPython/3.8.5

File hashes

Hashes for chiavdf-0.14.0-cp37-cp37m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c0d3015fad102115adb957186254978ced8cd3ff0057aa8320e7555c67c61069
MD5 6362f1a9311452a5d8ccb484a5241564
BLAKE2b-256 de59e69d90f4807842895a97687a2872aa53c52ffb67d2e3fe6529c9d10cb092

See more details on using hashes here.

File details

Details for the file chiavdf-0.14.0-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: chiavdf-0.14.0-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 451.8 kB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.56.1 CPython/3.8.7

File hashes

Hashes for chiavdf-0.14.0-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 27277b2db33323d44a57eebc85f55bfadc40d2132b3d1a28b65957f0252400a5
MD5 47c2789e4da6d602f3023ea9ba4c2e57
BLAKE2b-256 22d1ce41788afd38d626e7a517d452f2f3b9205fccdd9208932408b490e68078

See more details on using hashes here.

File details

Details for the file chiavdf-0.14.0-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: chiavdf-0.14.0-cp37-cp37m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 316.4 kB
  • Tags: CPython 3.7m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.56.1 CPython/3.8.7

File hashes

Hashes for chiavdf-0.14.0-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 a96931e19b67ce25d25de3f15d0b37f745825d20a459058fca46f7479590dd36
MD5 e8ff17e3be268ae037ab6cbe82f1fd9f
BLAKE2b-256 57aa2a03fd073305d6251e82c32a9af690a8bec971da7268db1c05b82cb74ffc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page