Skip to main content

Design hardware with Python

Project description

python build badge github pages badge

Chips

Chips is a high level, FPGA design tool inspired by Python.

Try it out

Why not try the Chips web app.

Design components in C, design FPGAs in Python

In Chips, a design resembles a network of computers implemented in a single chip. A chip consists of many interconnected components operating in parallel. Each component acts like a computer running a C program.

Components communicate with each other sending messages across buses. The design of a chip - the components and the connections between them - is carried in Python.

Chips come in three parts:

  1. A Python library to build and simulate chips by connecting together digital components using high speed buses.

  2. A collection of ready made digital components.

  3. A C-to-hardware compiler to make new digital components in the C programming language.

A quick example

from chips.api.api import *

#create a new chip
chip = Chip("knight_rider")

#define a component in C
scanner = Component(C_file = """

    /* Knight Rider */
    int leds = output("leds");
    void main(){
        unsigned shifter = 1;
        while(1){
            while(shifter != 0x80){
                fputc(shifter, leds);
                shifter <<= 1;
                wait_clocks(5000);
            }
            while(shifter != 0x01){
                fputc(shifter, leds);
                shifter >>= 1;
                wait_clocks(5000);
            }
        }
    }

""", inline=True)

#capture simulation output in Python
scanner_output = Response(chip, "scanner", "int")

#add scanner to chip and connect
scanner(chip, inputs = {}, outputs = {"leds":scanner_output})

#generate synthesisable verilog code
chip.generate_verilog()

#run simulation in Python
chip.simulation_reset()
while len(scanner_output) < 16:
    chip.simulation_step()

#check the results
print(list(scanner_output))

Work at a higher level of abstraction

In Chips, the details of gates, clocks, resets, finite-state machines and flow-control are handled by the tool, this leaves the designer free to think about the architecture and the algorithms. This has some benefits:

  • Designs are simpler.

  • Simpler designs take much less time to get working.

  • Simpler designs are much less likely to have bugs.

With Chips the batteries are included

With traditional Hardware Description Languages, there are many restrictions on what can be translated into hardware and implemented in a chip.

With Chips almost all legal code can be translated into hardware. This includes division, single and double precision IEEE floating point, maths functions, trig-functions, timed waits, pseudo-random numbers and recursive function calls.

Python is a rich verification environment

Chips provides the ability to simulate designs natively in Python. Python is an excellent programming language with extensive libraries covering many application domains. This makes it the perfect environment to verify a chip.

NumPy , SciPy and MatPlotLib will be of interest to engineers, but that’s just the start .

Under the hood

Behind the scenes, Chips uses some novel techniques to generate compact and efficient logic - a hybrid of software and hardware.

Not only does the compiler translate the C code into CPU instructions, it also generates a customised pipelined RISC CPU on the fly. The CPU provides the optimal instruction set for any particular C program.

By minimising the logic required to perform each concurrent task, designers can reduce power and area or cost. Performance gains can be achieved by increasing the number of concurrent tasks in a single device (tens in a small device to around a thousand or more large device).

While the code generated by chips is compact and efficient, die hard FPGA designers will be pleased to know that they can still hand craft performance critical data paths if they need to. There are even a few hand crafted components thrown in!

Install from github

$ git clone --recursive https://github.com/benfre/Chips.git
$ cd Chips
$ sudo python3 setup.py install

Install from PyPi

$ pip3 install chips-python

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Chips-python-2.2.3.tar.gz (125.4 kB view details)

Uploaded Source

Built Distributions

Chips_python-2.2.3-pp39-pypy39_pp73-win_amd64.whl (125.5 kB view details)

Uploaded PyPy Windows x86-64

Chips_python-2.2.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (126.4 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

Chips_python-2.2.3-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (128.3 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

Chips_python-2.2.3-pp38-pypy38_pp73-win_amd64.whl (125.5 kB view details)

Uploaded PyPy Windows x86-64

Chips_python-2.2.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (126.5 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

Chips_python-2.2.3-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (128.4 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

Chips_python-2.2.3-pp37-pypy37_pp73-win_amd64.whl (125.4 kB view details)

Uploaded PyPy Windows x86-64

Chips_python-2.2.3-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (126.8 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

Chips_python-2.2.3-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (128.7 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

Chips_python-2.2.3-cp310-cp310-win_amd64.whl (125.4 kB view details)

Uploaded CPython 3.10 Windows x86-64

Chips_python-2.2.3-cp310-cp310-win32.whl (122.7 kB view details)

Uploaded CPython 3.10 Windows x86

Chips_python-2.2.3-cp310-cp310-musllinux_1_1_x86_64.whl (196.3 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

Chips_python-2.2.3-cp310-cp310-musllinux_1_1_i686.whl (189.7 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

Chips_python-2.2.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (192.2 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

Chips_python-2.2.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (185.4 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

Chips_python-2.2.3-cp39-cp39-win_amd64.whl (125.4 kB view details)

Uploaded CPython 3.9 Windows x86-64

Chips_python-2.2.3-cp39-cp39-win32.whl (122.7 kB view details)

Uploaded CPython 3.9 Windows x86

Chips_python-2.2.3-cp39-cp39-musllinux_1_1_x86_64.whl (196.1 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

Chips_python-2.2.3-cp39-cp39-musllinux_1_1_i686.whl (189.5 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

Chips_python-2.2.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (192.0 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

Chips_python-2.2.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (185.2 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

Chips_python-2.2.3-cp38-cp38-win_amd64.whl (125.6 kB view details)

Uploaded CPython 3.8 Windows x86-64

Chips_python-2.2.3-cp38-cp38-win32.whl (122.8 kB view details)

Uploaded CPython 3.8 Windows x86

Chips_python-2.2.3-cp38-cp38-musllinux_1_1_x86_64.whl (195.3 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

Chips_python-2.2.3-cp38-cp38-musllinux_1_1_i686.whl (188.5 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

Chips_python-2.2.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (191.1 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

Chips_python-2.2.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (184.2 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

Chips_python-2.2.3-cp37-cp37m-win_amd64.whl (125.5 kB view details)

Uploaded CPython 3.7m Windows x86-64

Chips_python-2.2.3-cp37-cp37m-win32.whl (122.8 kB view details)

Uploaded CPython 3.7m Windows x86

Chips_python-2.2.3-cp37-cp37m-musllinux_1_1_x86_64.whl (195.2 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

Chips_python-2.2.3-cp37-cp37m-musllinux_1_1_i686.whl (188.3 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

Chips_python-2.2.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (189.7 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

Chips_python-2.2.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (183.0 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

Chips_python-2.2.3-cp36-cp36m-win_amd64.whl (128.4 kB view details)

Uploaded CPython 3.6m Windows x86-64

Chips_python-2.2.3-cp36-cp36m-win32.whl (124.8 kB view details)

Uploaded CPython 3.6m Windows x86

Chips_python-2.2.3-cp36-cp36m-musllinux_1_1_x86_64.whl (194.2 kB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ x86-64

Chips_python-2.2.3-cp36-cp36m-musllinux_1_1_i686.whl (187.3 kB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ i686

Chips_python-2.2.3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (189.7 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

Chips_python-2.2.3-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (183.0 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

File details

Details for the file Chips-python-2.2.3.tar.gz.

File metadata

  • Download URL: Chips-python-2.2.3.tar.gz
  • Upload date:
  • Size: 125.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for Chips-python-2.2.3.tar.gz
Algorithm Hash digest
SHA256 a964bb07397b5cd3c528d0acb79ae8037c8fc474a4a24693ec632f620a526e86
MD5 8c1e9be13f19225cefcd4e1a2d3a2cba
BLAKE2b-256 d2efd57154d935507bf452db8c1e3b9ae3c530a8ca4b2c7a3a59aeb4b04ef8ac

See more details on using hashes here.

File details

Details for the file Chips_python-2.2.3-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for Chips_python-2.2.3-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 70c6036a98ecfac450bf4277dfff1b5bbfd15aa409f1ed12945c3e38d00afad0
MD5 0570d22a518fa381cb70e45db23ae11e
BLAKE2b-256 dfad0ad62127ef4bb3275f6c5429c1c2423441ba6ffc29a4753ec8af07367301

See more details on using hashes here.

File details

Details for the file Chips_python-2.2.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for Chips_python-2.2.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6b5aa0fffb0ae8e24cc88b8e94d59dc265ffde39254c57e8acc6994dbb30ba35
MD5 c190d1cbb9c86666920b74805bb430a2
BLAKE2b-256 6fe833cda99aec8659884999100f0c1cc46cab9a464b2e5d6139b9ebfcc8f03f

See more details on using hashes here.

File details

Details for the file Chips_python-2.2.3-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for Chips_python-2.2.3-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 99872f2167d75f8b3c649640f806c0f029f707af2245a147b92df71ca1f03fce
MD5 64d3f25e5aad3e3512b244264367471a
BLAKE2b-256 5c8b8776ee6fc9543ff1c4b706f49b8ea9d1cb75cad22ebd8d4c7b7afa4d5b1a

See more details on using hashes here.

File details

Details for the file Chips_python-2.2.3-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for Chips_python-2.2.3-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 27fae982e9ff7f9fd6250d01c5a8afbc4ca68b1a229933c271184455289cc91a
MD5 4b8cc487082b56aa16d757846b65e4c9
BLAKE2b-256 23ce655f030aeb92b36b7ab94959faead5ced6211b97ca90c3af66f5a0ffeebb

See more details on using hashes here.

File details

Details for the file Chips_python-2.2.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for Chips_python-2.2.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e76c253a9495bf8c2e8c654e42bd1f65aaa0a34ad5f345eafdc8607108d906c3
MD5 e59c37c43b1619943c42110c4fcf299d
BLAKE2b-256 483722ceb4e61aa1c71db67fa40deca132d74ec133de0a7076a04d0e36f46086

See more details on using hashes here.

File details

Details for the file Chips_python-2.2.3-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for Chips_python-2.2.3-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 2a8cfccca6ff9595b909ff076d651f572b45f0a1c29090bf9a96a7092af48d21
MD5 b4a9747db162ace1d09502b061e7c1d0
BLAKE2b-256 48f92e4229faf4cff1ce1fbc9a103e39fda3ecaadfcc94bfb5d4b31452464e63

See more details on using hashes here.

File details

Details for the file Chips_python-2.2.3-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for Chips_python-2.2.3-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 756e6e82a7d95b91a56a4605f2afd79d445ca8eddb714f8210511c91edfd0d37
MD5 6f75e8cebaae37be2bb6365925f97abe
BLAKE2b-256 81bc8c11e74cd17b67f5e513136b7da5857ba407deaf1c5a8964bfd2f1f4b36f

See more details on using hashes here.

File details

Details for the file Chips_python-2.2.3-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for Chips_python-2.2.3-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8349319d79c030fc5fbdfa0a41a81a03605d7297f0d4014985c5fc634d704eb8
MD5 1a4c2a3e99ea6effb89c63fa4f521886
BLAKE2b-256 a69c69e3791726df6a26648951421bafedb12b9e585f0668c42fea44a049b0a1

See more details on using hashes here.

File details

Details for the file Chips_python-2.2.3-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for Chips_python-2.2.3-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 ed28594a273598f079916d723e6265c58e15ba74b47cc366ebefc0f2a353db37
MD5 e07927984248ab08d7cbdf8201e85847
BLAKE2b-256 81165686709c14778ed4e86272fbaf3458b0043b5c5effe45a33fe1b29c28248

See more details on using hashes here.

File details

Details for the file Chips_python-2.2.3-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for Chips_python-2.2.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 3d269b7da07467b92455279f934c3672bfc7423a4b2cc81439d09179fc8cab55
MD5 50dbc6e54bd689be07be1018b0051398
BLAKE2b-256 33a910d06bcc6aaf50763235ad10ba6c5c37d6d15da0cf5b2fcb71b364ae41c2

See more details on using hashes here.

File details

Details for the file Chips_python-2.2.3-cp310-cp310-win32.whl.

File metadata

File hashes

Hashes for Chips_python-2.2.3-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 66c9f859123f796906250c91de89a616114b5088513d63338d839e8f907d2117
MD5 6d399644ed91a32670a1144fbc5478a4
BLAKE2b-256 22ef23331108259e77d94754d3b97813fa6c7c0c7e2b1aa07c5f524dd9e339be

See more details on using hashes here.

File details

Details for the file Chips_python-2.2.3-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for Chips_python-2.2.3-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 8264cabf810fd74ca3a6ae6a50019d4aca52931ace2e864043921745cbceb2e8
MD5 5c293870bae1b82aa43da3a0282213c7
BLAKE2b-256 253c4ece5ec63d1108db6084dac403e342e89c4eac73ac5ca69e6be06afa5e61

See more details on using hashes here.

File details

Details for the file Chips_python-2.2.3-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for Chips_python-2.2.3-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 bea27e53eff38ceb3751335afc3b7d294d021b942c13d942319f3dde4ce46631
MD5 53b5b70138b0efa01eac11b7899262ca
BLAKE2b-256 4d2f2e8c025508835ef81884b99ac09aeeacaa85b63d44e9a910435097b5041d

See more details on using hashes here.

File details

Details for the file Chips_python-2.2.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for Chips_python-2.2.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9df0f40c37d93323fde245b84a89a019a6dc1a37faccc3fb9d395d81149d5b4a
MD5 d1d3758b9b3c15c142233ecc5cec6c65
BLAKE2b-256 510b56373b5b6f5528618e0c9c6e0754d032697596c17f45a21fb521d78608fa

See more details on using hashes here.

File details

Details for the file Chips_python-2.2.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for Chips_python-2.2.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 7d9f71ae823df9e590bc8975fca8ba6afff5df1697bf9812127748870a650386
MD5 cbceadf6fb6a70eeb87853652bc13b0b
BLAKE2b-256 2bbbb0885adbb58926ceb32efb0cc16c55de745fc06a5bc5b407ad0db2228cf7

See more details on using hashes here.

File details

Details for the file Chips_python-2.2.3-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for Chips_python-2.2.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 43956b0e139a3aac060c9eea165d7973c2c714772baee91aef4241033c774627
MD5 1e940a9e98c1bf5f7ba484423bea1fae
BLAKE2b-256 83881d7bc48ee38b0754de30c9687030103aabf70108143b0e415310939fc385

See more details on using hashes here.

File details

Details for the file Chips_python-2.2.3-cp39-cp39-win32.whl.

File metadata

  • Download URL: Chips_python-2.2.3-cp39-cp39-win32.whl
  • Upload date:
  • Size: 122.7 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for Chips_python-2.2.3-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 de91dbbb7a0534e17cb0bcf20272053af4cd41f9ba95f46cdd8475b964e28c0e
MD5 f6faf1dad351b6735fe7ec6ea865fd21
BLAKE2b-256 cd30c0607b61deee2da16f256f9a03aea1b2e083e22e6417b37769cf04a4c583

See more details on using hashes here.

File details

Details for the file Chips_python-2.2.3-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for Chips_python-2.2.3-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 aaf869b748ec1ea10bdd5079f90c0f54ac20898746ae9d1d784b21afaf26ca6c
MD5 ccc6ee74a52faf0fd05dc90bd0aa1a59
BLAKE2b-256 98923acd26adc77a7fc839e3a826d9ebc5ce30304613f2de3bedd52f7d50417d

See more details on using hashes here.

File details

Details for the file Chips_python-2.2.3-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for Chips_python-2.2.3-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 78cd5885ed90900b48e7b9ede40f5bdb67b12a2199006b409fec7cd9fc84dff0
MD5 68064411182cb64ffd4c0670648611d7
BLAKE2b-256 ee3412a39fb067c31bd96810da8d4c5537a74894f7ca025beca7a3436a1cb9cf

See more details on using hashes here.

File details

Details for the file Chips_python-2.2.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for Chips_python-2.2.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4dbd8ce3e1b22b916ec66aac0fa7818d2cbd54fa3a66b4002e029c1b1171f19d
MD5 b27106b2a171c11ef218bb31379741f3
BLAKE2b-256 788f90af9a10e833a677427d4b623f4f5f378b486ed6abd9f64edce5aaea37fc

See more details on using hashes here.

File details

Details for the file Chips_python-2.2.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for Chips_python-2.2.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 97f58b5bf3f96d42e0e030567a12d12b73290997795a2b3a0f9cc3bf2ce67ff9
MD5 bdb189ffedfe2967903ed0387e29e22a
BLAKE2b-256 d5086726ec514da1d785ebf500b9774a8c618f57223c342143bfbb7bd1185adc

See more details on using hashes here.

File details

Details for the file Chips_python-2.2.3-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for Chips_python-2.2.3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 2000383146187c3adfd1f5bc787ac9b5bd0f6e107f1d80d7583cc0053be661e3
MD5 917adc8156e641830e2cad4fd99ccb83
BLAKE2b-256 cfe40728dbe8a4e3b867155cc1db192f52710a1e17eb59e002e4dbcf7f11cb35

See more details on using hashes here.

File details

Details for the file Chips_python-2.2.3-cp38-cp38-win32.whl.

File metadata

  • Download URL: Chips_python-2.2.3-cp38-cp38-win32.whl
  • Upload date:
  • Size: 122.8 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for Chips_python-2.2.3-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 d54e00dffd79eb7d3267d3393e32a6ab892d5a35fb64c32197cde0eaa3498fb2
MD5 61751000fe4b32995efff874258b2f31
BLAKE2b-256 f45e24c32fe3605222030de981a7bfc7a60cd049f5e14de8fbbed990078ff65f

See more details on using hashes here.

File details

Details for the file Chips_python-2.2.3-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for Chips_python-2.2.3-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 f5d734900a5ae5ec6bd79b97f7659bd8e1ea6a0d9a298289f4bc91adf6a7d05f
MD5 2dc77459ed63d4226325da20be810117
BLAKE2b-256 53fead9c6b47da888d47bd60db08aee365bb8834d57295e0cca7b4b9c04da6a8

See more details on using hashes here.

File details

Details for the file Chips_python-2.2.3-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for Chips_python-2.2.3-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 88db8c5cefbb13336b1b6a952aa29466667c99ceb8dfe02908441ba5f9583d96
MD5 59e0a8a7fb85e713bdfed245c44ba6a4
BLAKE2b-256 78e0eb6c35332be89562059b5f558f3a07958fe44e3f63c31ac895f8ec97120b

See more details on using hashes here.

File details

Details for the file Chips_python-2.2.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for Chips_python-2.2.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6b827665348df1a1a9ad41550e534a9ec8a43916228e8e2b69f01f42acec8c6d
MD5 8c8f8346c98fe7c2a230b2da56805a8e
BLAKE2b-256 613a556ed94168d93f7e4a48c21195042750556cee9a3cd9d531acf7023c8683

See more details on using hashes here.

File details

Details for the file Chips_python-2.2.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for Chips_python-2.2.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 40362ec2f5e5ed7b0aef6b7630fac15b5c548d2cba7912dc9c2b6804dc751faa
MD5 4353177c637746af2905574f66b77944
BLAKE2b-256 fc053c692e36cb2fdb1c3d2a8a38b53fa4f5a3267a8c9435a8141d05dfe07ba4

See more details on using hashes here.

File details

Details for the file Chips_python-2.2.3-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for Chips_python-2.2.3-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 55c9cf870fc13e0998ea61de79f110aa0f3ec5f6a89ba4b84a03fb2143a4b6a8
MD5 a03b438845113d253cfe03c550ccce6f
BLAKE2b-256 846fdb12f20edb882375a8fa61035e7d005c5b99514976fc32f5ac993b6a4219

See more details on using hashes here.

File details

Details for the file Chips_python-2.2.3-cp37-cp37m-win32.whl.

File metadata

  • Download URL: Chips_python-2.2.3-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 122.8 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for Chips_python-2.2.3-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 30f0fde0d8dc498b4c45ae3d8b259fa34cde40ac130b6d9144e42e3634b4ead4
MD5 cedb0946e473942d38119b177c576019
BLAKE2b-256 fcf1cf8b59a1f044b36b8604ce2d8d0589f1a80fef185c7cb323aa224aa108e6

See more details on using hashes here.

File details

Details for the file Chips_python-2.2.3-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for Chips_python-2.2.3-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 a18a6a0dbbb84325beeae5f74ea2a5ddd556f7c35f2dc9fdb7144c3c916c6989
MD5 d4d89efffd4d106613c6f591fc85414a
BLAKE2b-256 2dc39dd0bb8cfa8f66695b8fab2df5911b6fde37f2dc77833ca342df96a62b42

See more details on using hashes here.

File details

Details for the file Chips_python-2.2.3-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for Chips_python-2.2.3-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 4dd5693775af4af7e40a8eaf6826856fa07098e6c37c0843f9212949e7776231
MD5 447e75c6f2feaa9eb41224765900ca47
BLAKE2b-256 e4288913d5274fa5a78e792b42e5704a77d9061423a5ff51fccf54e53161cc89

See more details on using hashes here.

File details

Details for the file Chips_python-2.2.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for Chips_python-2.2.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 05521c59461a8b3d5802f9a711633bfe866dc1161dbce7bad2d750c85b9b4930
MD5 f6184105b891eea3118e19a0d1e8495e
BLAKE2b-256 de790eaf5ede0556a056926f4017e0376b8756c93f63e9e84b34718e6f3dbc57

See more details on using hashes here.

File details

Details for the file Chips_python-2.2.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for Chips_python-2.2.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b095a25e1349e4c4446c9cd3fbc05f962141272d32229bdd812ad915bc145f0c
MD5 6a091dcc54dc113d4e69ab99ffe3c0db
BLAKE2b-256 8571bc510b4f25413d227c0db01af42b9edd4cd1f0f67f4d3aa1f391bb63f5da

See more details on using hashes here.

File details

Details for the file Chips_python-2.2.3-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for Chips_python-2.2.3-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 e158dc85a2900cc5d237efd1749003286c3127c4d6b527dbcadd9310cdcee50b
MD5 e5095b283fbdf106f66bacebedf946a7
BLAKE2b-256 b3ccfb669700e69d18dad65471d857442494a9af98cdebcb8cde99c23d3bcac5

See more details on using hashes here.

File details

Details for the file Chips_python-2.2.3-cp36-cp36m-win32.whl.

File metadata

  • Download URL: Chips_python-2.2.3-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 124.8 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for Chips_python-2.2.3-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 9b98e782425aca8f50d2cd3ed526600b062c2f98ddb24c840a82917ee4fb5ddc
MD5 33c0008618de72b4448fa20bdd27b7dc
BLAKE2b-256 97bee07859dfc9b2fe75b5c5549d8f0aebb6cafbeac688d4dfbb184bd7ad2e96

See more details on using hashes here.

File details

Details for the file Chips_python-2.2.3-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for Chips_python-2.2.3-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 555d4ea72675b67f058f6f6e0ca6b61fa9537caf52da6352e4566c4edc328847
MD5 f44bd40606af9f3ced82dbc4b9b930e1
BLAKE2b-256 647de4766108e6e6d899eba4d3a48c8117e6061c77740b9476f339fed4ac277c

See more details on using hashes here.

File details

Details for the file Chips_python-2.2.3-cp36-cp36m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for Chips_python-2.2.3-cp36-cp36m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 89531efa4e3b9b56824b545c1d5bd71750219c18a919b868b5f97776e729757e
MD5 62a840c4e6317256df23f534f7cbce4b
BLAKE2b-256 aab9b3761fff5eaa4360fa031703b66b2f5c99e17b796562bdd739b31c4d76b8

See more details on using hashes here.

File details

Details for the file Chips_python-2.2.3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for Chips_python-2.2.3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ba7483bbba4d286bec56f173d6184c1f0856e73ef36c47db5079c175f6862ef6
MD5 4c469f361c74c8f08e537bbdb2756593
BLAKE2b-256 1744a50d91a96a640c9e17c9eb9e0b1bb9cac9e433b87509f24319d9ae482ee4

See more details on using hashes here.

File details

Details for the file Chips_python-2.2.3-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for Chips_python-2.2.3-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 d94a804e5c12a2698ed9d9919f016f7d834cfc16bafaf388d004c76061a0a4e9
MD5 45b53dab60f569f7e42f439849ae72c4
BLAKE2b-256 ae8ea8b08059d5f77e552918d4a0d6cd3c61a36cb3eeaa9aadc5cfe1410ef819

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page