"Deep Learning Computer Vision library for easy data loading and model building"
Project description
chitra
What is chitra?
chitra (चित्र) is an image utility library for Deep Learning tasks. (It is not image-processing library)
chitra reduces image data loading boilerplates for classification and object-detection.
It can also generate bounding-boxes from the annotated dataset.
If you have more use cases please raise an issue with the feature you want.
Installation
Using pip (recommended)
pip install -U chitra
From source
git clone https://github.com/aniketmaurya/chitra.git
cd chitra
pip install -e .
Usage
Loading data for image classification
import numpy as np
import tensorflow as tf
import chitra
from chitra.dataloader import Clf, show_batch
import matplotlib.pyplot as plt
clf_dl = Clf()
data = clf_dl.from_folder(cat_dog_path, target_shape=(224, 224))
clf_dl.show_batch(8, figsize=(8,8))
for e in data.take(1):
image = e[0].numpy().astype('uint8')
label = e[1].numpy()
plt.imshow(image)
plt.show()
Image datagenerator
Dataset class provides the flexibility to load image dataset by updating components of the class.
Components of Dataset class are:
- image file generator
- resizer
- label generator
- image loader
These components can be updated with custom function by the user according to their dataset structure. For example the Tiny Imagenet dataset is organized as-
train_folder/
.....folder1/
.....file.txt
.....folder2/
.....image1.jpg
.....image2.jpg
.
.
.
......imageN.jpg
The inbuilt file generator search for images on the folder1
, now we can just update the image file generator
and rest of the functionality will remain same.
Dataset also support progressive resizing of images.
Updating component
from chitra.datagenerator import Dataset
from glob import glob
ds = Dataset(data_path)
# it will load the folders and NOT images
ds.filenames[:3]
No item present in the image size list
['/Users/aniket/Pictures/data/tiny-imagenet-200/train/n02795169/n02795169_boxes.txt',
'/Users/aniket/Pictures/data/tiny-imagenet-200/train/n02795169/images',
'/Users/aniket/Pictures/data/tiny-imagenet-200/train/n02769748/images']
def load_files(path):
return glob(f'{path}/*/images/*')
def get_label(path):
return path.split('/')[-3]
ds.update_component('get_filenames', load_files)
ds.filenames[:3]
get_filenames updated with <function load_files at 0x7fad6916d0e0>
No item present in the image size list
['/Users/aniket/Pictures/data/tiny-imagenet-200/train/n02795169/images/n02795169_369.JPEG',
'/Users/aniket/Pictures/data/tiny-imagenet-200/train/n02795169/images/n02795169_386.JPEG',
'/Users/aniket/Pictures/data/tiny-imagenet-200/train/n02795169/images/n02795169_105.JPEG']
Progressive resizing
image_sz_list = [(28, 28), (32, 32), (64, 64)]
ds = Dataset(data_path, image_size=image_sz_list)
ds.update_component('get_filenames', load_files)
ds.update_component('get_label', get_label)
print()
# first call to generator
for img, label in ds.generator():
print('first call to generator:', img.shape)
break
# seconds call to generator
for img, label in ds.generator():
print('seconds call to generator:', img.shape)
break
# third call to generator
for img, label in ds.generator():
print('third call to generator:', img.shape)
break
get_filenames updated with <function load_files at 0x7fad6916d0e0>
get_label updated with <function get_label at 0x7fad6916d8c0>
first call to generator: (28, 28, 3)
seconds call to generator: (32, 32, 3)
third call to generator: (64, 64, 3)
tf.data support
Creating a tf.data
dataloader was never as easy as this one liner. It converts the Python generator into tf.data.Dataset
for a faster data loading, prefetching, caching and everything provided by tf.data.
image_sz_list = [(28, 28), (32, 32), (64, 64)]
ds = Dataset(data_path, image_size=image_sz_list)
ds.update_component('get_filenames', load_files)
ds.update_component('get_label', get_label)
dl = ds.get_tf_dataset()
for e in dl.take(1):
print(e[0].shape)
for e in dl.take(1):
print(e[0].shape)
for e in dl.take(1):
print(e[0].shape)
get_filenames updated with <function load_files at 0x7fad6916d0e0>
get_label updated with <function get_label at 0x7fad6916d8c0>
(28, 28, 3)
(32, 32, 3)
(64, 64, 3)
Trainer
The Trainer class inherits from tf.keras.Model
, it contains everything that is required for training.
It exposes trainer.cyclic_fit method which trains the model using Cyclic Learning rate discovered by Leslie Smith.
from chitra.trainer import Trainer, create_cnn
from chitra.datagenerator import Dataset
from PIL import Image
ds = Dataset(cat_dog_path, image_size=(224,224))
model = create_cnn('mobilenetv2', num_classes=2, name='Cat_Dog_Model')
trainer = Trainer(ds, model)
# trainer.summary()
WARNING:tensorflow:`input_shape` is undefined or non-square, or `rows` is not in [96, 128, 160, 192, 224]. Weights for input shape (224, 224) will be loaded as the default.
trainer.compile2(batch_size=8,
optimizer=tf.keras.optimizers.SGD(1e-3, momentum=0.9, nesterov=True),
lr_range=(1e-6, 1e-3),
loss='binary_crossentropy',
metrics=['binary_accuracy'])
Model compiled!
trainer.cyclic_fit(epochs=5,
batch_size=8,
lr_range=(0.00001, 0.0001),
)
cyclic learning rate already set!
Epoch 1/5
1/1 [==============================] - 0s 14ms/step - loss: 6.4702 - binary_accuracy: 0.2500
Epoch 2/5
Returning the last set size which is: (224, 224)
1/1 [==============================] - 0s 965us/step - loss: 5.9033 - binary_accuracy: 0.5000
Epoch 3/5
Returning the last set size which is: (224, 224)
1/1 [==============================] - 0s 977us/step - loss: 5.9233 - binary_accuracy: 0.5000
Epoch 4/5
Returning the last set size which is: (224, 224)
1/1 [==============================] - 0s 979us/step - loss: 2.1408 - binary_accuracy: 0.7500
Epoch 5/5
Returning the last set size which is: (224, 224)
1/1 [==============================] - 0s 982us/step - loss: 1.9062 - binary_accuracy: 0.8750
<tensorflow.python.keras.callbacks.History at 0x7f8b1c3f2410>
Model Visualization
It is important to understand what is going inside the model. Techniques like GradCam and Saliency Maps can visualize what the Network is learning. trainer
module has InterpretModel class which creates GradCam and GradCam++ visualization with almost no additional code.
from chitra.trainer import InterpretModel
trainer = Trainer(ds, create_cnn('mobilenetv2', num_classes=1000, keras_applications=False))
model_interpret = InterpretModel(True, trainer)
image = ds[1][0].numpy().astype('uint8')
image = Image.fromarray(image)
model_interpret(image)
print(IMAGENET_LABELS[285])
Returning the last set size which is: (224, 224)
index: 282
Egyptian Mau
Data Visualization
Image annotation
Thanks to fizyr keras-retinanet.
from chitra.visualization import draw_annotations
labels = np.array([label])
bbox = np.array([[30, 50, 170, 190]])
label_to_name = lambda x: 'Cat' if x==0 else 'Dog'
draw_annotations(image, ({'bboxes': bbox, 'labels':labels,}), label_to_name=label_to_name)
plt.imshow(image)
plt.show()
Utils
Limit GPU memory or enable dynamic GPU memory growth for Tensorflow
from chitra.utils import limit_gpu, gpu_dynamic_mem_growth
# limit the amount of GPU required for your training
limit_gpu(gpu_id=0, memory_limit=1024*2)
No GPU:0 found in your system!
gpu_dynamic_mem_growth()
No GPU found on the machine!
Contributing
Contributions of any kind are welcome. Please check the Contributing Guidelines before contributing.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file chitra-0.0.20.tar.gz
.
File metadata
- Download URL: chitra-0.0.20.tar.gz
- Upload date:
- Size: 31.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.7.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b8ce33cbefc5ce957259ec69a1359967c2fd25fa70258d93b8a214efa6e698a7 |
|
MD5 | b82be98408175272736874d0b654aeac |
|
BLAKE2b-256 | 083966492f795b4270644dc41ef5471d0516cca41782c5fc3268fe5da2698888 |
Provenance
File details
Details for the file chitra-0.0.20-py3-none-any.whl
.
File metadata
- Download URL: chitra-0.0.20-py3-none-any.whl
- Upload date:
- Size: 32.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.7.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 94a0b888c4efd6f42a2b8807b74016ca038657c40ecd905af5a2bf30ff765f13 |
|
MD5 | d619a48085a0025cbb6579a09a0df189 |
|
BLAKE2b-256 | a960f072a46ad0dfbfbade02c821cbd57c76c331a11007f39e0de66979d83674 |