Skip to main content

🦛 CHONK your texts with Chonkie ✨ - The no-nonsense RAG chunking library

Project description

Chonkie Logo

🦛 Chonkie ✨

PyPI version License Documentation Package size Downloads GitHub stars

The no-nonsense RAG chunking library that's lightweight, lightning-fast, and ready to CHONK your texts

InstallationUsageSupported MethodsAcknowledgementsCitation

so i found myself making another RAG bot (for the 2342148th time) and meanwhile, explaining to my juniors about why we should use chunking in our RAG bots, only to realise that i would have to write chunking all over again unless i use the bloated software library X or the extremely feature-less library Y. WHY CAN I NOT HAVE SOMETHING JUST RIGHT, UGH?

Can't i just install, import and run chunking and not have to worry about dependencies, bloat, speed or other factors?

Well, with chonkie you can! (chonkie boi is a gud boi)

🚀 Feature-rich: All the CHONKs you'd ever need
✨ Easy to use: Install, Import, CHONK
⚡ Fast: CHONK at the speed of light! zooooom
🌐 Wide support: Supports all your favorite tokenizer CHONKS
🪶 Light-weight: No bloat, just CHONK
🦛 Cute CHONK mascot: psst it's a pygmy hippo btw
❤️ Moto Moto's favorite python library

What're you waiting for, just CHONK it!

Installation

To install chonkie, simply run:

pip install chonkie

Chonkie follows the rule to have minimal defualt installs, read the DOCS to know the installation for your required chunker, or simply install all if you don't want to think about it (not recommended).

pip install chonkie[all]

Usage

Here's a basic example to get you started:

# First import the chunker you want from Chonkie 
from chonkie import TokenChunker

# Import your favorite tokenizer library
# Also supports AutoTokenizers, TikToken and AutoTikTokenizer
from tokenizers import Tokenizer 
tokenizer = Tokenizer.from_pretrained("gpt2")

# Initialize the chunker
chunker = TokenChunker(tokenizer)

# Chunk some text
chunks = chunker("Woah! Chonkie, the chunking library is so cool!",
                  "I love the tiny hippo hehe.")

# Access chunks
for chunk in chunks:
    print(f"Chunk: {chunk.text}")
    print(f"Tokens: {chunk.token_count}")

More example usages given inside the DOCS

Supported Methods

Chonkie provides several chunkers to help you split your text efficiently for RAG applications. Here's a quick overview of the available chunkers:

  • TokenChunker: Splits text into fixed-size token chunks.
  • WordChunker: Splits text into chunks based on words.
  • SentenceChunker: Splits text into chunks based on sentences.
  • SemanticChunker: Splits text into chunks based on semantic similarity.
  • SDPMChunker: Splits text using a Semantic Double-Pass Merge approach.

More on these methods and the approaches taken inside the DOCS

Acknowledgements

Chonkie was developed with the support and contributions of the open-source community. We would like to thank the following projects and individuals for their invaluable help:

  • OpenAI for their amazing tiktoken library, which provides the backbone for our tokenization needs.
  • spaCy for their powerful spaCy library, which we use for advanced sentence segmentation.
  • Sentence Transformers for their sentence-transformers library, which enables semantic chunking.
  • The contributors and maintainers of various open-source projects that have inspired and supported the development of Chonkie.

And to all the users and contributors who have provided feedback, reported issues, and helped improve Chonkie.

Special thanks to Moto Moto for endorsing Chonkie with his famous quote:

"I like them big, I like them chonkie." ~ Moto Moto

Citation

If you use Chonkie in your research, please cite it as follows:

@misc{chonkie2024,
  author = {Minhas, Bhavnick},
  title = {Chonkie: A Fast Feature-full Chunking Library for RAG Bots},
  year = {2024},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/bhavnick/chonkie}},
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

chonkie-0.1.1.tar.gz (17.1 kB view details)

Uploaded Source

Built Distribution

chonkie-0.1.1-py3-none-any.whl (18.8 kB view details)

Uploaded Python 3

File details

Details for the file chonkie-0.1.1.tar.gz.

File metadata

  • Download URL: chonkie-0.1.1.tar.gz
  • Upload date:
  • Size: 17.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for chonkie-0.1.1.tar.gz
Algorithm Hash digest
SHA256 75a5267de92a804a28056073840dc92a7a38f9dab01410b58c5ce72ee79b5f8c
MD5 f8baa0af9ef1f02af978339439ddc2e1
BLAKE2b-256 ce6b0b232710c8836047854b6e6b6cee8eee564b63e22ffe7916f9898426d445

See more details on using hashes here.

Provenance

File details

Details for the file chonkie-0.1.1-py3-none-any.whl.

File metadata

  • Download URL: chonkie-0.1.1-py3-none-any.whl
  • Upload date:
  • Size: 18.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for chonkie-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 e71adacefaf91fe70f5b0286f92111e2f4d8327065f787e0ed766d1bc93e1da0
MD5 b9863b29e9b6f3e51cfbb0804ee2a876
BLAKE2b-256 475e4bea6eccd6822816a72e7c412739c84edd115febc4112e5ffcffc9e9204c

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page