Python implementation of the Chow test (1960).
Project description
Chow Test
This project provides an implementation of the Chow break test.
The Chow test was initially developed by Gregory Chow in 1960 to test whether one regression or two or more regressions best characterise the data. As such, the Chow test is capable of detecting "structural breaks" within time-series. Additional information can be obtained from:
This implementation supports simple linear models, and finding breaks where k = 2.
Installation
This module requires Python 3.0+ to run. The module can can be imported by:
pip install chowtest
from chow_test import chowtest
Input Arguments
The required input arguments are listed below:
Argument | Description |
---|---|
y | dependent variable (Pandas DataFrame Column) |
X | independent variable(s) (Pandas Dataframe Column(s)) |
last_index_in_model_1 | index of final point prior to assumed structural break (str) |
first_index_in_model_2 | index of first point following structural break (str) |
significance_level | the significance level for hypothesis testing (float) |
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file chowtest-0.1.4.tar.gz
.
File metadata
- Download URL: chowtest-0.1.4.tar.gz
- Upload date:
- Size: 4.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.7.1 importlib_metadata/4.8.3 pkginfo/1.8.2 requests/2.23.0 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.6.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 54258a226df6a8807015d19beba00b03074068eeef351e069eef7287596ecf47 |
|
MD5 | 7536b11541933c0ddeb67de121e77799 |
|
BLAKE2b-256 | 8af24fd589674386ed621de5661b5f55387e86503fc32e2632fd76ab4efb6f07 |
File details
Details for the file chowtest-0.1.4-py3-none-any.whl
.
File metadata
- Download URL: chowtest-0.1.4-py3-none-any.whl
- Upload date:
- Size: 4.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.7.1 importlib_metadata/4.8.3 pkginfo/1.8.2 requests/2.23.0 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.6.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c936b45553e3a7a235d93ae7b72c520f0bc5f0bda6a93496855ba0e88c398043 |
|
MD5 | e2c41190d4885833439f81f9ca667998 |
|
BLAKE2b-256 | b9c1c3bae99d4bb08775139e30affc0b8befb80a0437f80a5edd99dbc8f2aa5a |