Skip to main content

Plot abritrary math expressions, and compute zeros, derivatives, integrals, regression and more!

Project description

Chplot - Arbitrary functions plotting and computations

Chplot is a Python >= 3.9 module to plot any arbitrary mathematical expressions as well as data series from files, and compute its derivatives and integrals, where it equals zero, linear and non-linear regressions, and much more !

Installation

chplot is available on Pypi, and You can install it with the command:

python -m pip install chplot

You can also install it by cloning this repo and installing it directly:

git clone https://github.com/charon25/Chplot.git
cd Chplot
python -m pip install .

To check it is properly installed, just run and check it outputs the current version:

python -m chplot --version

This module requires the following third-party modules:

  • matplotlib >= 3.6.1
  • mpmath >= 1.2.1
  • numpy >= 1.23.4
  • scipy >= 1.9.3
  • shunting_yard >= 1.0.12
  • tqdm >= 4.64.1

Usage

In the rest of this README, the term "expression" will refer to any mathematical expression, possibly with one variable (by default x but can be changed).

From a CLI

This module is primarly intended to be used in the command-line. To do this, use the following command:

python -m chplot [expression1, [expression2, ...]] [additional-parameters...]

Where all the additional parameters are documented in the CLI options section. Note that there can be no expression, as data can come from other sources.

A lot of examples are given in the Examples section.

Important note

You need to surround any expression with double quotes (") if it contains a space ( ). Furthermore, due to the working of the argparse Python module and the majority of shells, you may have to surround any expression with double quotes (") if it contains a caret (^). Finally, if it starts with a dash (-) you may also need to add a space ( ) or a 0 before it. For instance, you need to write " -x" or "0-x" to get the function f(x) = -x and "x^2" (instead of just x^2) to get the square function.

From Python code

The chplot module can also be used from another program. Code snippets:

# Use this to use the built-in PlotParameters class
import chplot

parameters = chplot.PlotParameters()
chplot.plot(parameters)
# Use this to use another object and set default values
import chplot

parameters = ... # any object
chplot.set_default_values(parameters) # add any missing field with its default value

chplot.plot(parameters)

All the PlotParameters arguments are summarized in the CLI options section.

CLI options

No option is mandatory.

CLI options
PlotParameters class equivalent Expected arguments Effect
$\emptyset$ expressions: list[str] Any number of expressions (including none of them) or filepaths The expressions of the mathematical functions to plot and do computations on. If using the CLI, filepaths can also be provided, and There can by none of them.
-v
--variable
variable: str One string The variable going of the horizontal axis. Can be more than one character. Note that the variable will override any constant of function with the same name. Defaults to x.
--no-sn disable_scientific_notation: bool $\emptyset$ Disable the automatic conversion of scientific notation in every expression (e.g. 1.24e-1 to 1.24*10^(-1)). Defaults to False.
-n
--n-points
n_points: int One positive integer (excluding zero) The number of points on the horizontal axis for the plotting of the expressions. Defaults to 10001.
-i
--integers
is_integer: bool $\emptyset$ Forces the points where the expressions are computed to be integers between the specified limits. The number of points will not exceed what is specified with the -n parameter. Defaults to False.
-x
--x-lim
x_lim: tuple[float|str|None, float|str|None] Two expressions The horizontal axis bounds (inclusive) where the expression are computed. First argument is the min, second is the max. Any expression (such as 2pi or 1+exp(2)) is valid. It is also the graph default horizontal axis, but they can be automatically adjusted to accomodate the plotted data. Defaults to 0 1.
-xlog
--xlog
is_x_log: bool $\emptyset$ Forces a logarithmic scale on the horizontal axis. If some horizontal axis bounds are negative, will modify them. Defaults to False.
-y
--y-lim
y_lim: tuple[float|str|None, float|str|None] Two expressions The vertical axis bounds (inclusive) of the graph. First argument is the min, second is the max. Any expression (such as 2pi or 1+exp(2)) is valid. If not specified, will use matplotlib default ones to accomodate all data. Will restrict the graph to them is specified.
-z
--y-zero
must_contain_zero: bool $\emptyset$ Forces the vertical axis to contain zero. Defaults to False.
-ylog
--ylog
is_y_log: bool $\emptyset$ Forces a logarithmic scale on the vertical axis. If some vertical axis bounds are negative, will modify them. Defaults to False.
-xl
--x-label
x_label: str One string Label of the horizontal axis. Defaults to nothing.
-yl
--y-label
y_label: str One string Label of the vertical axis. Defaults to nothing.
-t
--title
title: str One string Title of the graph. Defaults to nothing.
-rl
--remove-legend
remove_legend: bool $\emptyset$ Removes the graph legend. Defaults to False.
--no-plot no_plot: bool $\emptyset$ Does not show the plot. However, does not prevent saving the figure. Defaults to False.
-dis
--discontinuous
markersize: int|None One optional positive integer (excluding zero) Transforms the style of the graph from a continuous line to discrete points with the specified radius. If present without a value, will defaults to a radius of 1. If the --integer parameter is also present, will still affect the points radius.
--square square_graph: bool $\emptyset$ Forces the graph to be a square (aspect ratio of 1). Defaults to False.
-lw
--line-width
line_width: float One positive float (excluding zero) Width of the plotted functions. Will not affect regressions. Defaults to 1.5 (matplotlib defaut).
-c
--constants
constants: list[str] One string or more, either a filepath or of the forme <name>=<expression> Adds constants which may be used by any other expressions (including axis bounds). They must either be of the form <name>=<expression> (eg a=4sin(pi/4)) or be filepath containing lines respecting this format. Note that filepaths are only accepted in the CLI. May override already existing constants and functions. If a constant refers to another one, it should be defined after. Defaults to nothing.
-f
--files
data_files: list[str] One or more filepaths Adds data contained in CSV files as new functions to the graph. See the CSV files format section for more details. Defaults to nothing.
-s
--save-graph
save_figure_path: str One filepath Saves the graph at the specified path. If not included, will not save the figure (default behavior).
-d
--save-data
save_data_path: str One filepath Saves the graph data (x and y values) at the specified path in CSV format. If not included, will not save the data (default behavior).
-p
--python-files
python_files: list[str] One or more filepaths Adds functions contained in Python files. See the Additional Python function format section for more details. Defaults to nothing.
--zeros zeros_file: str|None One optional filepath Computes where the expressions equal zero. If not included, will not compute it (default behavior), else if included without argument, prints the results to the console, else writes it to the given file.
-int
--integral
integral_file: str|None One optional filepath Computes the integral of all functions on the entire interval where it is plotted. Note that it does not add the antideritive of the functions to the graph, but only computes the area under them on their definition interval. If not included, will not compute it (default behavior), else if included without argument, prints the results to the console, else writes it to the given file.
-deriv
--derivative
derivation_orders: list[int] At least one positive integer (excluding zero) Computes and adds to the graph the derivative of the specified orders of every other function. Note that the higher the order, the more inaccuracy and unstability it has. Furthermore, the derivative computation will shave off a few points on each side, so the derivatives are defined on a smaller interval.
-reg
--regression
regression_expression: str One expression Computes the coefficients of the given regression to get the best fit to every other function. The regression parameters should have the form _rX where X is any string made of digits, letters and underscores and starting with a letter (eg _ra0). The regressions will also be added in the final graph. When using the CLI, the expression can also be one of a few default keywords (listed in Regression default keywords).

Options synergies

Every option that computes something based on the functions will act on every function defined before it applies. The order of application is the following (each item applies to all the previous ones):

  • Base expressions & file data
  • Regressions
  • Derivations
  • Integrals & zeros

For instance, this means every regression will also be derivated, and every derivative will be integrated.

CSV files format

The --file option will accept any CSV file respecting those rules:

  • the column delimiter is eitehr a comma (,), a semicolon (;), a space ( ) or a tabulation (\t) ;
  • the decimal separator is either a dot (.) or a comma (,) if the column delimiter is something else (for countries and language using them, such as French or German) ;
  • text entry containing the column delimiter must be surrounded by double quotes (") ;
  • to have double quotes (") in a text entry, just double them ("").

The first column will be considered the horizontal axis data for the entire file. Each subsequent column will be a new function. They might all be of different lengths, and some value may be missing. Any missing value in the first column will ignore the whole line.

The first non numerical line will be used as label for the functions.

Examples

The file

x,"First y","Second ""y""",ThirdY,EmptyColumn
0,0,,0,
1,10,100,,
2,20,,2000,
3,30,300,3000,
4,40,400,,

Will result in the following functions (represented as (x,y) couples):

  • First y: (0, 0), (1, 10), (2, 20), (3, 30), (4, 40)
  • Second "y": (1, 100), (3, 300), (4, 400)
  • ThirdY: (0, 0), (2, 2000), (3, 3000)

Note that the last column does not have any values, so it won't be registered at all.

The file

x;y1;y2
0,0;1,0;2,1
0,3;1,2;2,5
0,6;1,55;2,123
1;1,825;2,99

Will result in the following functions:

  • y1: (0, 1), (0.3, 1.2), (0.6, 1.55), (1, 1.825)
  • y2: (0, 2.1), (0.3, 2.5), (0.6, 2.123), (1, 2.99)

Regression default keywords

When using Chplot from the command line and using the --regression command, a keyword can be specified instead of an expression to get usual regression expression. Those keywords are listed below :

Keyword
Mathematical function
Equivalent expression
const
constant
$f(x) = m$ _rm
lin
linear
$f(x) = ax + b$ _ra * x + _rb
pN
polyN
polynomialN
where $N \in \mathbb{N} $
$$f(x) = \sum_{i=0}^N a_i x^i$$ _ra0
_ra1 * x + _ra0
_ra2 * x^2 + _ra1 * x + _r0
...
power $f(x) = k x^\alpha$ _rk * x^_ralpha
powery $f(x) = k x^\alpha + y_0$ _rk * x^_ralpha + r_y0
log $f(x) = a \ln(x) + b$ _ra * ln(x) + _rb
exp $f(x) = a \mathrm{e}^{bx}$ _ra * exp(x * _rb)
expy $f(x) = a \mathrm{e}^{bx} + y_0$ _ra * exp(x * _rb) + _ry0

Note that poly0 is equivalent to constant and poly1 is equivalent to linear.

Additional Python function format

Chplot expression can accept functions usable in any expression directly from other Python files. Those file must respect those rules:

  • they must be in the same directory as the console when using the CLI (and in the same directory as the python execution when using the code version [NOT TESTED]) ;
  • all functions to add must be decorated with the @plottable decorator (importable with from chplot import plottable). The decorator must indicate how many arguments is expected by the function, either directly or with the arg_count keyword (i.e. @plottable(1) or @plottable(arg_count=2)) ;
  • all functions must only accept int or float and must only return one value accepted by the float() built-in function of Python, such as, but not limited to, int, float or bool (if not, will be considered as the same as a raised Exception) ;
  • to indicate an error in the computation (such as a division by zero or the square root of a negative number), the function can either raise an exception or return math.nan (or float('nan')). Note that an exception will completely stop the computation at that point while nan will be used in the rest of the expression, which may change the result slightly.

Everything other than those rules is allowed, such as importing other modules. The name of the Python function will be the same as the name used in the expression.

Examples

The Python file functions.py

from chplot import plottable
import math

@plottable(1)
def inc(x: float) -> float:
 return x + 1

@plottable(arg_count=2)
def invradius(x: float, y: float) -> float:
 if x == y == 0:
    raise ZeroDivisionError
 
 return 1 / math.sqrt(x * x + y * y)

def dec(x: float) -> float:
 return x - 1

@plottable
def double(x: float) -> float:
 return x * 2

Will define 2 new functions usable in expression: inc and invradius. dec does not have the decorator and will be ignored, and double does not indicate how many parameters it accepts, and therefore will also be ignored (but a warning will be logged).

This means, the following command is valid:

python -m chplot "inc(invradius(x, 5))" -x 1 inc(2) -p functions.py

Available functions

Chplot is bundled by default with more than 60 mathematical and physical constants and over 200 mathematical functions from the default math module, scipy.special, mpmath as well as custom made ones. They are all described in the following sections. The documentation of functions from math or the third-party modules can be found in their respective wikis: math, scipy.special, mpmath.

There are also the 5 base operations : +, -, *, /, ^.

Constants

nan and _ are valid constants that both evaluates to math.nan. They can be used to remove some points from the graph (for instance with the if or in functions, see below). inf is also a valid constant evaluating to math.inf.

Mathematical constants

chplot name Name Usual symbol Exact value chplot value
pi Pi $\pi$ $\pi$ $3.141\ 592\ 653\ 589\ 793$
tau Tau $\tau$ $2\pi$ $6.283\ 185\ 307\ 179\ 586$
e Euler's number $e$ $$\exp(1) = \sum_{n=0}^{+\infty} \frac{1}{n!}$$ $2.718\ 281\ 828\ 459\ 045$
ga
em
Euler-Mascheroni's constant $\gamma$ $$\lim_{n\to\infty} \left( \sum_{k=1}^n \left( \frac{1}{k}\right) - \log n \right)$$ $0.577\ 215\ 664\ 901\ 532 9$
phi Golden ratio $\phi$ $\frac{1}{2} (1 + \sqrt{5})$ $1.618\ 033\ 988\ 749\ 895$
sqrt2 Square root of 2 $\sqrt{2}$ $\sqrt{2}$ $1.414\ 213\ 562\ 373\ 095\ 1$
apery Apery's constant $$\zeta(3) = \sum_{n=1}^{+\infty} \frac{1}{n^3} $$ $1.202\ 056\ 903\ 159\ 594$
brun Brun's constant $B_2$ Sum of the reciprocal of the twin primes $1.902\ 160\ 583\ 104$
catalan Catalan's constant $G$ $$\sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n + 1)^2} $$ $0.915\ 965\ 594\ 177\ 219$
feigenbaumd First Feigenbaum's constant $\delta$ $4.669\ 201\ 609\ 102\ 990\ 67$
feigenbauma Second Feigenbaum's constant $\alpha$ $2.502\ 907\ 875\ 095\ 892\ 82$
glaisher Glaisher-Khinkelin's constant $A$ $$\lim_{n\to\infty} \frac{\Pi_{k=1}^{n} k^k}{n^{\frac{n^2}{2} + \frac{n}{2} + \frac{1}{12}}\cdot\mathrm{e}^{-\frac{n^2}{4}}}$$ $1.282\ 427\ 129\ 100\ 622\ 6$
khinchin Khinchin's constant $K_0$ $$\prod_{r=1}^{+\infty} \left(1 + \frac{1}{r(r+2)} \right)^{\log_2 r}$$ $2.685\ 452\ 001\ 065\ 306\ 2$
mertens Meissel-Mertens's constant $M$ $$\gamma + \sum_{p\text{ prime}}\left(\ln\left(1 - \frac{1}{p}\right) + \frac{1}{p} \right)$$ $0.261\ 497\ 212\ 847\ 642\ 77$

Physical constants

The constants, their values and their units are taken from https://en.wikipedia.org/wiki/List_of_physical_constants.

chplot name Quantity Symbol chplot value (in SI units) Units
a0 Bohr's radius $a_0$ $5.291\ 772\ 109\ 03\times10^{-11}$ $\text{m}$
alpha Fine-structure constant $\alpha$ $7.297\ 352\ 569\ 3\times10^{-3}$ ---
b Wien's wavelength displacement law constant $b$ $2.897\ 771\ 955\times10^{-3}$ $\text{m}\cdot\text{K}$
bp Wien's entropy displacement law constant $b_{\text{entropy}}$ $3.002\ 916\ 077\times10^{-3}$ $\text{m}\cdot\text{K}$
bp Wien's frequency displacement law constant $b'$ $5.878\ 925\ 757\times10^{10}$ $\text{Hz}\cdot\text{K}^{-1}$
c Speed of light in vacuum $c$ $2.997\ 924\ 58\times10^8$ $\text{m}\cdot\text{s}^{-1}$
c1 First radiation constant $c_1$ $3.741\ 771\ 852\times10^{-16}$ $\text{W}\cdot\text{m}^2$
c1L Second radiation constant $c_{1L}$ $1.191\ 042\ 972\ 397\ 188\times10^{-16}$ $\text{W}\cdot\text{m}^2\cdot\text{sr}^{-1}$
c2 Second radiation constant $c_2$ $1.438\ 776\ 877\times10^{-2}$ $\text{m}\cdot\text{K}$
dnuCs Hyperfine transistion frequency of Cesium-133 $\Delta\nu_{\text{Cs}}$ $9.192\ 631\ 770\times10^{9}$ $\text{Hz}$
ec Elementary charge $e$ $1.602\ 176\ 634\times10^{-19}$ $\text{C}$
Eh Hartree's energy $E_h$ $4.359\ 744\ 722\ 207\ 1\times10^{-18}$ $\text{J}$
epsilon0
eps0
Vacuum electric permittivity $\varepsilon_0$ $8.854\ 187\ 812\ 8\times10^{-12}$ $\text{F}\cdot\text{m}^{-1}$
eV Electronvolt value in Joule $1.602\ 176\ 634\times10^{-19}$ $\text{J}$
F Faraday's constant $F$ $9.648\ 533\ 212\ 331\ 002\times10^4$ $\text{C}\cdot\text{mol}^{-1}$
G Gravitational constant $G$ $6.674\ 3\times10^{-11}$ $\text{m}^3\cdot\text{kg}^{-1}\cdot\text{s}^{-2}$
g Gravity of Earth $g$ $9.806\ 65$ $\text{m}\cdot\text{s}^{-2}$
G0 Conductance quantum $G_0$ $7.748\ 091\ 729\times10^{-5}$ $\text{S}$
ge Electron g-factor $g_e$ $-2.002\ 319\ 304\ 362\ 56$ ---
GF0 Fermi coupling constant
Reduced Fermi constant
$$G^0_F$$ $4.543\ 795\ 7\times10^{14}$ $\text{J}^{-2}$
gmu Muon g-factor $g_\mu$ $-2.002\ 331\ 841\ 8$ ---
gP Proton g-factor $g_P$ $5.585\ 694\ 689\ 3$ ---
h Planck's constant $h$ $6.626\ 070\ 15\times10^{-34}$ $\text{J}\cdot\text{Hz}^{-1}$
hb Reduced Planck's constant $\hbar$ $1.054\ 571\ 817\times10^{-34}$ $\text{J}\cdot\text{s}$
kB Boltzmann's constant $k$, $k_B$ $1.380\ 649\times10^{-23}$ $\text{J}\cdot\text{K}^{-1}$
ke Coulomb's constant $k_e$ $8.987\ 551\ 792\ 3\times10^9$ $\text{N}\cdot\text{m}^2\cdot\text{C}^{-2}$
KJ Josephson's constant $K_J$ $4.835\ 978\ 484\times10^{14}$ $\text{Hz}\cdot\text{V}^{-1}$
m12C Atomic mass of carbon-12 $m(^{12}\text{C})$ $1.992\ 646\ 879\ 92\times10^{26}$ $\text{kg}$
M12C Molar mass of carbon-12 $M(^{12}\text{C})$ $1.199\ 999\ 999\ 58\times10^{-2}$ $\text{kg}\cdot\text{mol}^{-1}$
me Electron mass $m_e$ $9.109\ 383\ 701\ 5\times10^{-31}$ $\text{kg}$
mmu Muon mass $m_\mu$ $1.883\ 531\ 627\times10^{-28}$ $\text{kg}$
mn Neutron mass $m_n$ $1.674\ 927\ 498\ 04\times10^{-27}$ $\text{kg}$
mp Proton mass $m_p$ $1.672\ 621\ 923\ 69\times10^{-27}$ $\text{kg}$
mt Top quark mass $m_t$ $3.078\ 4\times10^{-25}$ $\text{kg}$
mtau Tau mass $m_\tau$ $3.167\ 54\times10^{-27}$ $\text{kg}$
mu Atomic mass constant $m_u$ $1.660\ 539\ 066\ 6\times10^{-27}$ $\text{kg}$
Mu Molar mass constant $M_u$ $9.999\ 999\ 996\ 5\times10^{-4}$ $\text{kg}\cdot\text{mol}^{-1}$
mu0 Vacuum magnetic parmeability $\mu_0$ $1.256\ 637\ 602\ 12\times10^{-6}$ $\text{N}\cdot\text{A}^{-2}$
muB Bohr's magneton $\mu_B$ $9.274\ 010\ 078\ 3\times10^{-24}$ $\text{J}\cdot\text{T}^{-1}$
muN Nuclear magneton $\mu_N$ $5.050\ 783\ 746\ 1\times10^{-27}$ $\text{J}\cdot\text{T}^{-1}$
NA Avogadro constant $N_A$ $6.022\ 140\ 76\times10^{23}$ $\text{mol}^{-1}$
R Molar gas constant $R$ $8.314\ 462\ 618\ 153\ 24$ $\text{J}\cdot\text{mol}^{-1}\cdot\text{K}^{-1}$
re Classical electron radius $r_e$ $2.817\ 940\ 326\ 2\times10^{-15}$ $\text{m}$
Rinf Rydberg's constant $R_\infty$ $1.097\ 373\ 156\ 816\times10^7$ $\text{m}^{-1}$
RK Von Klitzing's constant $R_K$ $2.581\ 280\ 745\times10^{4}$ $\Omega$
Ry Rydberg's unit of energy $R_y$ $2.179\ 872\ 361\ 103\ 5\times10^{-18}$ $\text{J}$
sigma Stefan-Boltzmann's constant $\sigma$ $5.670\ 374\ 419\times10^{-8}$ $\text{W}\cdot\text{m}^{-2}\cdot\text{K}^{-4}$
sigmae Thomson's cross section $\sigma_e$ $6.652\ 458\ 732\ 1\times10^{-29}$ $\text{m}^2$
VmSi Molar volume of silicon $V_m(\text{Si})$ $1.205\ 883\ 199\times10^{-5}$ $\text{m}^3\cdot\text{mol}^{-1}$
Z0 Characteristic impedance of vacuum $Z_0$ $3.767\ 303\ 136 \ 68\times10^2$ $\Omega$

Astronomical constants

All the planets data are taken from : https://nssdc.gsfc.nasa.gov.

chplot name Quantity chplot value (in SI units) Units
Msun Sun mass $1.988\ 5\times10^{30}$ $\text{kg}$
Mmercury Mercury mass $3.301\times10^{23}$ $\text{kg}$
Mvenus Venus mass $4.867\ 3\times10^{24}$ $\text{kg}$
Mearth Earth mass $5.972\ 2\times10^{24}$ $\text{kg}$
Mmoon Moon mass $7.346\times10^{22}$ $\text{kg}$
Mmars Mars mass $6.416\ 9\times10^{23}$ $\text{kg}$
Mjupiter Jupiter mass $1.898\ 13\times10^{27}$ $\text{kg}$
Msaturn Saturn mass $5.683\ 2\times10^{26}$ $\text{kg}$
Muranus Uranus mass $8.681\ 1\times10^{25}$ $\text{kg}$
Mneptune Neptune mass $1.024\ 09\times10^{26}$ $\text{kg}$
Mpluto Pluto mass $1.303\times10^{22}$ $\text{kg}$
Mcharon Charon mass $1.586\times10^{21}$ $\text{kg}$
Rsun Sun volumetric mean radius $6.957\times10^{8}$ $\text{m}$
Rmercury Mercury volumetric mean radius $2.439\ 7\times10^{6}$ $\text{m}$
Rvenus Venus volumetric mean radius $6.051\ 8\times10^{6}$ $\text{m}$
Rearth Earth volumetric mean radius $6.371\times10^{6}$ $\text{m}$
Rmoon Moon volumetric mean radius $1.737\ 4\times10^{6}$ $\text{m}$
Rmars Mars volumetric mean radius $3.389\ 5\times10^{6}$ $\text{m}$
Rjupiter Jupiter volumetric mean radius $6.991\ 1\times10^{7}$ $\text{m}$
Rsaturn Saturn volumetric mean radius $5.8232\times10^{7}$ $\text{m}$
Ruranus Uranus volumetric mean radius $2.536\ 2\times10^{7}$ $\text{m}$
Rneptune Neptune volumetric mean radius $2.462\ 2\times10^{7}$ $\text{m}$
Rpluto Pluto volumetric mean radius $1.188\times10^{6}$ $\text{m}$
Rcharon Charon volumetric mean radius $6.06\times10^{5}$ $\text{m}$
AU Astronomical unit in meters $1.495\ 978\ 707\times10^{11}$ $\text{m}$
ly Light-year in meters $9.460\ 730\ 472\ 580\ 8\times10^{15}$ $\text{m}$
pc Parsec in meters $3.085\ 677\ 581\ 491\ 367\ 3\times10^{11}$ $\text{m}$

From default math module

Documentation: https://docs.python.org/3/library/math.html

chplot name(s) math name Number of arguments Notes
acos acos 1
acosh acosh 1
asin asin 1
asinh asinh 1
atan atan 1
atanh atanh 1
atan2 atan2 2
cbrt cbrt 1
ceil ceil 1
copysign copysign 2
cos cos 1
cosh cosh 1
degrees degrees 1
dist dist 4 dist(x1, y1, x2, y2) is interpreted as math.dist((x1, y1), (x2, y2))
erf erf 1
erfc erfc 1
exp exp 1
expm1 expm1 1
floor floor 1
fmod fmod 2
gamma gamma 1
hypot hypot 2
lgamma
lngamma
lgamma 1
log
ln
log 1
log10 log10 1
log1p log1p 1
log2 log2 1
radians radians 1
remainder remainder 2
sin sin 1
sinh sinh 1
sqrt sqrt 1
tan tan 1
trunc trunc 1

From scipy.special

Documentation: https://docs.scipy.org/doc/scipy/reference/special.html

chplot name(s) scipy.special name Number of arguments Notes
agm agm 2
Ai airy 1 First output
Aip airy 1 Second output
bei bei 1
beip beip 1
ber ber 1
berp berp 1
beta beta 2
betainc betainc 3
betaincinv betaincinv 3
betaln betaln 2
Bi airy 1 Third output
binom
binomial
binom 2
Bip airy 1 Fourth output
Chi shichi 1 Second output
Ci sici 1 Second output
digamma digamma 1
eAi airye 1 First output
eAip airye 1 Second output
eBi airye 1 Third output
eBip airye 1 Fourth output
ellipe ellipe 1
ellipeinc ellipeinc 2
ellipk ellipk 1
ellipkinc ellipkinc 2
elliprc elliprc 2
elliprd elliprd 3
elliprf elliprf 3
elliprg elliprg 3
elliprj elliprj 4
erfcinv erfcinv 1
erfi erfi 1
erfinv erfinv 1
factorial
fac
factorial 1
fresnelc fresnel 1 Second output
fresnels fresnel 1 First output
gammainc gammainc 2
gammaincc gammaincc 2
gammainccinv gammainccinv 2
gammaincinv gammaincinv 2
hurwitz
hurwitzzeta
zeta 2
hyp0f1 hyp0f1 2
hyp1f1 hyp1f1 3
hyp2f1 hyp2f1 4
hyperu hyperu 3
it2struve0 it2struve0 1
itmodstruve0 itmodstruve0 1
itstruve0 itstruve0 1
iv
besseli
iv 2
jv
besselj
jv 2
kei kei 1
keip keip 1
ker ker 1
kerp kerp 1
kv
besselk
kv 2
lambertw lambertw 1
loggamma loggamma 1
modstruve
struvel
modstruve 2
psi psi 1
rgamma rgamma 1
Shi shichi 1 First output
Si sici 1 First output
sincpi sinc 1
struve
struveh
struve 2
yv
bessely
yv 2
zeta zeta 1

From mpmath

Documentation: https://mpmath.org/doc/current/

chplot name(s) mpmath name Number of arguments Notes
acot acot 1
acoth acoth 1
acsc acsc 1
acsch acsch 1
altzeta
eta
altzeta 1
angerj angerj 2
asec asec 1
asech asech 1
backlunds backlunds 1
barnesg barnesg 1
betainc2 betainc 4
chebyt chebyt 2
chebyu chebyu 2
clcos clcos 2
clsin clsin 2
cospi
cospi
cospi 1
cot cot 1
coth coth 1
coulombc coulombc 2
coulombf coulombf 3
coulombg coulombg 3
csc csc 1
csch csch 1
Ei ei 1
ellipf ellipf 2
ellippi ellippi 3
fac2 fac2 1
ff ff 1
fib fib 1
fibonacci fibonacci 1
gammainc2 gammainc 3
gegenbauer gegenbauer 3
harmonic harmonic 1
hermite hermite 2
hyp1f2 hyp1f2 4
hyp2f0 hyp2f0 3
hyp2f3 hyp2f3 5
hyp3f2 hyp3f2 6
hyperfac hyperfac 1
jacobi jacobi 4
laguerre laguerre 3
legendre legendre 2
legenp legenp 3
legenq legenq 3
lerchphi lerchphi 3
li li 1 Computes li(x, offset=False)
Li li 1 Computes li(x, offset=True)
lommels1 lommels1 3
lommels2 lommels2 3
nzetazeros nzeros 1
pcfd pcfd 2
pcfu pcfu 2
pcfv pcfv 2
pcfw pcfw 2
polyexp polyexp 2
polylog polylog 2
primepi primepi 1
primezeta primezeta 1
rf rf 1
riemannr riemannr 1
scorergi scorergi 1
scorerhi scorerhi 1
sec sec 1
sech sech 1
secondzeta secondzeta 1
siegeltheta siegeltheta 1
siegelz siegelz 1
sinc sinc 1
stieltjes stieltjes 1
superfac superfac 1
W lambertw 1
webere webere 2
whitm whitm 3
whitw whitw 3

Probability functions

chplot name Name Arguments Expression
normpdf Normal distribution PDF $x, \mu, \sigma$ $$\frac{1}{\sigma\sqrt{2\pi}}\mathrm{e}^{-\frac{1}{2}\left(\frac{x - \mu}{\sigma} \right)^2}$$
normcdf Normal distribution CDF $x, \mu, \sigma$ $$\frac{1}{2}\left(1 + \mathrm{erf}\left(\frac{x - \mu}{\sigma\sqrt{2}}\right) \right)$$
unormpdf Unit normal distribution PDF $x$ $$\frac{1}{\sqrt{2\pi}}\mathrm{e}^{-\frac{x^2}{2}}$$
unormcdf Unit normal distribution CDF $x$ $$\frac{1}{2}\left(1 + \mathrm{erf}\left(\frac{x}{\sqrt{2}}\right) \right)$$
tripdf Triangle distribution PDF $x, a, b, c$ $$0 \text{ if } x\leq a \text{ or } x > b$$
$$\frac{2(x-a)}{(b-a)(c-a)} \text{ if } a < x\leq c$$
$$\frac{2(b-x)}{(b-a)(b-c)} \text{ if } c < x\leq b$$
tricdf Triangle distribution CDF $x, a, b, c$ $$0 \text{ if } x < a$$
$$\frac{(x-a)^2}{(b-a)(c-a)} \text{ if } a\leq x\leq c$$
$$1 - \frac{(b-x)^2}{(b-a)(b-c)} \text{ if } c < x\leq b$$
$$1 \text{ if }b < x $$
uniformpdf Uniform distribution PDF $x, a, b$ $$0 \text{ if } x < a \text{ or } x > b$$
$$\frac{1}{b-a} \text{ if } a\leq x\leq b$$
uniformcdf Uniform distribution CDF $x, a, b$ $$0 \text{ if } x < a$$
$$\frac{x-a}{b-a} \text{ if } a\leq x\leq b$$
$$1 \text{ if }b < x $$
exppdf Exponential distribution PDF $x, \lambda$ $$0 \text{ if } x < 0$$
$$\lambda\mathrm{e}^{-\lambda x} \text{ if } 0\leq x$$
expcdf Exponential distribution CDF $x, \lambda$ $$0 \text{ if } x < 0$$
$$1 - \mathrm{e}^{-\lambda x} \text{ if } 0\leq x$$
studentpdf Student's t-distribution PDF $x, \nu$ Wikipedia
studentcdf Student's t-distribution CDF $x, \nu$ Wikipedia
betapdf Beta distribution PDF $x, \alpha, \beta$ Wikipedia
betacdf Beta distribution CDF $x, \alpha, \beta$ Wikipedia
chi2pdf
khi2pdf
Chi-squared distribution PDF $x, k$ Wikipedia
chi2cdf
khi2cdf
Chi-squared distribution CDF $x, k$ Wikipedia
gammapdf Gamma distribution PDF $x, \alpha, \beta$ Wikipedia
gammacdf Gamma distribution CDF $x, \alpha, \beta$ Wikipedia
cauchypdf Cauchy distribution PDF $x, x_0, \gamma$ $$\frac{1}{\pi\gamma\left(1 + \left(\frac{x - x_0}{\gamma}\right)^2\right)}$$
cauchycdf Cauchy distribution CDF $x, x_0, \gamma$ $$\frac{1}{\pi}\arctan\left(\frac{x - x_0}{\gamma}\right) + \frac{1}{2}$$

To use the ( $k, \theta$ ) parametrization of the gamma distribution, just apply $\alpha = k$ and $\beta = \frac{1}{\theta}$.

Other functions

In this table, $\{x\}$ represents the fractional part of $x$.

chplot name Arguments Expression
relu
ramp
$x$ $0 \text{ if } x < 0$
$x \text{ if } 0\leq x$
lrelu $x, a$ $a\cdot x \text{ if } x < 0$
$x \text{ if } 0\leq x$
sigm
sigmoid
$x$ $$\frac{1}{1 + \mathrm{e}^{-x}}$$
sign
sgn
$x$ $-1 \text{ if } x < 0$
$0 \text{ if } x = 0$
$+1 \text{ if } x > 0$
lerp $x, m_x, M_x, m_y, M_y$ $$m_y + (M_y - m_y)\frac{x - m_x}{M_x - m_x}$$
lerpt $t, m, M$ $M + t * (M - m)$
heaviside $x$ $0 \text{ if } x < 0$
$\frac{1}{2} \text{ if } x = 0$
$1 \text{ if } x > 0$
rect $x$ $0 \text{ if } x < -\frac{1}{2} \text{ or } x > \frac{1}{2}$
$1 \text{ if } -\frac{1}{2} \leq x \leq \frac{1}{2}$
triangle
tri
$x$ $0 \text{ if } x < -1 \text{ or } x > 1$
$1 - |x|; \text{ if } -1 \leq x \leq 1$
sawtooth $x$ $2\{x - \frac{1}{2}\} - 1$
squarewave
sqwave
$x$ $\frac{1}{2} \text{ if } \{x\} = 0 \text{ or } \{x\} = \frac{1}{2}$
$1 \text{ if } \{x\} < \frac{1}{2}$
$0 \text{ if } \frac{1}{2} < \{x\}$
trianglewave
triwave
$x$ $4\{x\} \text{ if } \{x\} < \frac{1}{4}$
$2-4\{x\} \text{ if } \frac{1}{4} \leq \{x\} < \frac{3}{4}$
$4\{x\} + 4 \text{ if } \frac{3}{4} < \{x\}$
abs $x$ $|x|$
min $a, b$ $\min(a,b)$
min3 $a, b, c$ $\min(a,b,c)$
min4 $a, b, c, d$ $\min(a,b,c,d)$
max $a, b$ $\max(a,b)$
max3 $a, b, c$ $\max(a,b,c)$
max4 $a, b, c, d$ $\max(a,b,c,d)$
if $x, T, F$ $F \text{ if } x < 0$
$T \text{ if } 0\leq x$
ifn $x, T, F$ $T \text{ if } x\leq 0$
$F \text{ if } 0 < x$
ifz $x, T, F$ $T \text{ if } x = 0$
$F \text{ if } x\neq 0$
in $x, L, U, T, F$ $T \text{ if } L\leq x\leq U$
$F \text{ if } x < L \text{ or } U < x$
out $x, L, U, T, F$ $F \text{ if } L\leq x\leq U$
$T \text{ if } x < L \text{ or } U < x$

Notes :

  • out(x, L, U, T, F) = in(x, L, U, F, T)
  • if(x, T, F) = in(x, 0, inf, T, F)
  • ifn(x, T, F) = in(x, -inf, 0, T, F)
  • ifn(x, T, F) = if(-x, T, F)
  • It is possible to use _ inside one of these function to remove some part of the graph.

Alphabetically-sorted list of every included constants and functions

Click to reveal
_ a0 abs acos acosh acot
acoth acsc acsch agm Ai Aip
alpha altzeta angerj apery asec asech
asin asinh atan atan2 atanh AU
b backlunds barnesg bei beip bent
ber berp besseli besselj besselk bessely
beta betacdf betainc betainc2 betaincinv betaln
betapdf Bi binom binomial Bip bp
brun c c1 c1L c2 catalan
cauchycdf cauchypdf cbrt ceil chebyt chebyu
Chi chi2cdf chi2pdf Ci clcos clsin
copysign cos cosh cospi cot coth
coulombc coulombf coulombg csc csch degrees
digamma dist dnuCs e eAi eAip
eBi eBip ec Eh Ei ellipe
ellipeinc ellipf ellipk ellipkinc ellippi elliprc
elliprd elliprf elliprg elliprj em eps0
epsilon0 erf erfc erfcinv erfi erfinv
eta eV exp expcdf expm1 exppdf
F fac fac2 factorial feigenbauma feigenbaumd
ff fib fibonacci floor fmod fresnelc
fresnels G g G0 ga gamma
gammacdf gammainc gammainc2 gammaincc gammainccinv gammaincinv
gammapdf ge gegenbauer GF0 glaisher gmu
gP h harmonic hb heaviside hermite
hurwitz hurwitzzeta hyp0f1 hyp1f1 hyp1f2 hyp2f0
hyp2f1 hyp2f3 hyp3f2 hyperfac hyperu hypot
if ifn ifz in inf it2struve0
itmodstruve0 itstruve0 iv jacobi jv kB
ke kei keip ker kerp khi2cdf
khi2pdf khinchin KJ kv laguerre lambert
lambertw legendre legenp legenq lerchphi lerp
lerpt lgamma Li li ln lngamma
log log10 log1p log2 loggamma lommels1
lommels2 lrelu ly m12C M12C max
max3 max4 Mcharon me Mearth mertens
min min3 min4 Mjupiter Mmars Mmercury
Mmoon mmu mn Mneptune modstruve mp
Mpluto Msaturn Msun mt mtau mu
Mu mu0 muB muN Muranus Mvenus
NA nan normcdf normpdf nzetazeros out
pc pcfd pcfu pcfv pcfw phi
pi polyexp polylog primepi primezeta psi
R radians ramp Rcharon re Rearth
rect relu remainder rf rgamma riemannr
Rinf Rjupiter RK Rmars Rmercury Rmoon
Rneptune Rpluto Rsaturn Rsun Ruranus Rvenus
Ry sawtooth scorergi scorerhi sec sech
secondzeta sgn Shi Si siegeltheta siegelz
sigm sigma sigmae sigmoid sign sin
sinc sincpi sinh sqrt sqrt2 squarewave
sqwave stieltjes struve struveh struvel studentcdf
studentpdf superfac tan tanh tau tri
triangle trianglewave tricdf tripdf triwave trunc
uniformcdf uniformpdf unormcdf unormpdf VmSi W
webere whitm whitw yv Z0 zeta

Graph and computations examples

Every file referenced in any commands can be found in the resources folder.

CLI parameters

Expressions

python -m chplot x
python -m chplot x " -x+1" "x^2"

python -m chplot resources/files/equations.txt


-v parameter

python -m chplot t(t-1) -v t
python -m chplot sin(var*3) -v var


Overriding constant with variable:

python -m chplot c
python -m chplot c -v c


--no-sn

The expression in the first command is interpreted as $x\times1.2\cdot10^{-1}=0.12x$, and as $1.2\mathrm{e}\cdot x - 1$ in the second.

python -m chplot "x*1.2e-1"
python -m chplot "x*1.2e-1" --no-sn


-x, -y parameters

Using expressions in the horizontal axis bounds:

python -m chplot "x^2+x" -x -3 3
python -m chplot x -x " -sqrt(2)" "zeta(3)"

Using expressions in the vertical axis bounds and restricting the graph:

python -m chplot fac(x) -x 0 6
python -m chplot fac(x) -x 0 6 -y 0.5 1.5


-n, -i, --dis parameters

The -i parameter removes the line between points.

python -m chplot cos(x) -x 0 10 -n 20
python -m chplot cos(x) -x 0 10 -i


python -m chplot sqrt(x) -x 0 100 -i
python -m chplot sqrt(x) -x 0 10 --dis 10 -n 35


-xlog, -ylog parameters

python -m chplot "2^x" -x 1 100 -ylog
python -m chplot "ln(x)" -x 1 100 -xlog


Log axis will adjust the bounds to remove negative points:

python -m chplot "x^3.5" -x 1 100 -xlog -ylog
python -m chplot "x" -x -5 5 -xlog
python -m chplot "x" -x -5 -1 -xlog

The second command generates a warning:

[CHPLOT] WARNING: x-axis scale is logarithmic, but its lower bound (-5.0) is negative, x-axis will be truncated to positive values

The third command generates en error:

[CHPLOT] CRITICAL: x-axis scale is logarithmic, but both its lower (-5.0) and upper (-1.0) bounds are negative, cannot graph anything

-z parameter

python -m chplot "sin(x)+10" -x 1 10pi
python -m chplot "sin(x)+10" -x 1 10pi -z


-xl, -yl, -t, -rl parameters

python -m chplot zeta(x) -x 1 10 -y 0 3
python -m chplot zeta(x) -x 1 10 -y 0 3 -xl "Variable x" -yl "Zeta(x)" -t "Zeta function on [1 ; 10]" -rl


-square, -lw parameters

python -m chplot cbrt(x) --square
python -m chplot cbrt(x) -lw 5


-c parameter

If a constant requires another one, define it after:

python -m chplot a*x+b -c a=2 b=7
python -m chplot "a*x^2-b*x+1" -c a=8pi/19 "b=a^2-1"


Constants can also be an expression, or come from a file:

python -m chplot cos(a*x) -c "a=(sqrt(2) - zeta(3)) / sin(1.5)" -x 0 50
python -m chplot "a*x^3+b*x^2+c*x+d" -c resources\files\constants.txt -x -10 10


-f parameter

All the CSV format are summarized in the CSV files format section.

python -m chplot -f resources\files\data.csv


-d parameter

python -m chplot x "x(x+1)" "x(x+1)(x+2)/2" "x(x+1)(x+2)(x+3)/6" -d resources\files\saved_data.csv

The data can be found in the saved_data.csv file.


-p parameter

The file functions.py must be in the directory from where the command is executed.

python -m chplot "frac(x)+3" "is_prime(x)" "rnd(x, x/2)" -p functions.py -x 0 10


--zeros

python -m chplot sin(x) -x -7 7 --zeros
python -m chplot "x^2-2" "in(x, 0.2, 0.3, 0, -2x+1)" -x 0 2 --zeros

The result of these commands (besides the plot) are the following. The first are the zeros of the function $\sin(x)$ on [-7 ; 7]: $\pm 2\pi$, $\pm \pi$ and $0$. Then the zero of $x^2-2$ is $\sqrt{2}$. Finally the last expression is completely zero on the interval [0.2 ; 0.3] and at $1/2$.

===== ZEROS OF THE FUNCTIONS =====
Note that non-continuous functions may give false zeros. Furthermore, some zeros may be missing if the graph is tangent to the x-axis.

- On the interval [-7.0 ; 7.0], the function f(x) = sin(x) equals zero...
    at x = -6.2831853072
    at x = -3.1415926536
    at x = 0.0
    at x = 3.1415926536
    at x = 6.2831853072
===== ZEROS OF THE FUNCTIONS =====
Note that non-continuous functions may give false zeros. Furthermore, some zeros may be missing if the graph is tangent to the x-axis.

- On the interval [0.0 ; 2.0], the function f(x) = x^2-2 equals zero...
    at x = 1.4142135624

- On the interval [0.0 ; 2.0], the function f(x) = in(x, 0.2, 0.3, 0, -2x+1) equals zero...
    on [0.2 ; 0.3]
    at x = 0.5

--integral

python -m chplot "1/x" -x 1 e --integral
python -m chplot "x^2" "exp(x)" --integral

The result of these commands (besides the plot) are the following.$$\int_1^e\frac{dx}{x} = 1$$ $$\int_0^1x^2dx = \frac{1}{3}$$ $$\int_0^1\exp(x)dx=e - 1$$

===== INTEGRALS OF THE FUNCTIONS =====
Note that the more points, the smallest the error and that floating point numbers may introduce errors. Furthermore, discontinuous functions may indicate really huge error margins.

- ∫f(x)dx = 1.0000000021279944
    where f(x) = 1/x on [1.0 ; 2.718]
===== INTEGRALS OF THE FUNCTIONS =====
Note that the more points, the smallest the error and that floating point numbers may introduce errors. Furthermore, discontinuous functions may indicate really huge error margins.

- ∫f(x)dx = 0.33333333499999834
    where f(x) = x^2 on [0.0 ; 1.0]


- ∫f(x)dx = 1.7182818298909472
    where f(x) = exp(x) on [0.0 ; 1.0]

--deriv parameter

The second command illustrates the instability of the higher order derivatives.

python -m chplot "sin(x)" --deriv 1 2 3 4 -x 0 4pi
python -m chplot "exp(x)" --deriv 1 4 7 -n 100000


Synergy between --deriv and --zeros/--integral.

python -m chplot "x^2+2" -x -3 3 --deriv 1 --zeros --integral
===== ZEROS OF THE FUNCTIONS =====
Note that non-continuous functions may give false zeros. Furthermore, some zeros may be missing if the graph is tangent to the x-axis.

Furthermore, on derivatives and file data, zeros are approximated using linear interpolation, and may be far from their real values.
- On the interval [-3.0 ; 3.0], the function f(x) = x^2+2 never equals zero.

- On the interval [-2.998 ; 2.998], the function f(x) = d/dx * (x^2+2) equals zero...
    at x = 0.0



===== INTEGRALS OF THE FUNCTIONS =====
Note that the more points, the smallest the error and that floating point numbers may introduce errors. Furthermore, discontinuous functions may indicate really huge error margins.
The x-axis limits on derivatives are slightly tighter because of the algorithm used. This may be counteracted by adding more points.

- ∫f(x)dx = 30.000000359996804
    where f(x) = x^2+2 on [-3.0 ; 3.0]


- ∫f(x)dx = 6.18809004038144e-14
    where f(x) = d/dx * (x^2+2) on [-2.998 ; 2.998]

--reg

Default keyword usable in the CLI.

python -m chplot "sin(x)" " -exp(x)" --reg lin

===== REGRESSION COEFFICIENTS OF THE FUNCTIONS =====

Regression function: reg(x) = a * x + b

- Function f(x) = sin(x)
  Coefficients:
    a = 0.85583 (exact 0.8558336726408089)
    b = 0.03178 (exact 0.031776961574734974)

  Accuracy on [0.000 ; 1.000]:
    R2 = 0.9948573993162803
    |err| <= 0.046139649407647365
    |rel err| <= 317.625449951033

  Copyable expression:
    f(x) = (0.8558336726408089) * x + (0.031776961574734974)


- Function f(x) =  -exp(x)
  Coefficients:
    a = -1.69032 (exact -1.6903174201716293)
    b = -0.87314 (exact -0.8731372047610497)

  Accuracy on [0.000 ; 1.000]:
    R2 = 0.9837173025833181
    |err| <= 0.15482720352636603
    |rel err| <= 0.12686279523895028

  Copyable expression:
    f(x) = (-1.6903174201716293) * x + (-0.8731372047610497)

Arbitrary expression for regression (here: $a + \frac{b}{x} + \frac{c}{x^2}$).

python -m chplot "x" "x^2-3x+2" -x 1 2 --reg "_ra + _rb/x + _rc/x^2" 

===== REGRESSION COEFFICIENTS OF THE FUNCTIONS =====

Regression function: reg(x) = a + b/x + c/x^2

- Function f(x) = x
  Coefficients:
    a = 4.32347 (exact 4.323472460240034)
    b = -6.08251 (exact -6.082510526066791)
    c = 2.7852 (exact 2.7852046542434103)

  Accuracy on [1.000 ; 2.000]:
    R2 = 0.9990492201082051
    |err| <= 0.026166588416653536
    |rel err| <= 0.026166588416653536

  Copyable expression:
    f(x) = (4.323472460240034) + (-6.082510526066791)/x + (2.7852046542434103)/x^2


- Function f(x) = x^2-3x+2
  Coefficients:
    a = 1.70398 (exact 1.7039810825081398)
    b = -5.44646 (exact -5.446461246934391)
    c = 3.8091 (exact 3.809103050454299)

  Accuracy on [1.000 ; 2.000]:
    R2 = 0.8852455638434826
    |err| <= 0.06697377834548113
    |rel err| <= 669.2141410779176

  Copyable expression:
    f(x) = (1.7039810825081398) + (-5.446461246934391)/x + (3.809103050454299)/x^2

Regression on file data.

python -m chplot -f resources\files\data.csv --reg poly2

===== REGRESSION COEFFICIENTS OF THE FUNCTIONS =====

Regression function: reg(x) = a2 * x^2 + a1 * x + a0

- Function f(x) = data.csv - vy(t)
  Coefficients:
    a2 = 0.0 (exact -5.0979039530237654e-08)
    a1 = -9.81 (exact -9.809999897491432)
    a0 = 10.0 (exact 9.999999965897445)

  Accuracy on [0.000 ; 2.030]:
    R2 = 1.0
    |err| <= 3.608967524826312e-08
    |rel err| <= 2.809290005481242e-06

  Copyable expression:
    f(x) = (-5.0979039530237654e-08) * x^2 + (-9.809999897491432) * x + (9.999999965897445)


- Function f(x) = data.csv - y(t)
  Coefficients:
    a2 = -4.905 (exact -4.904999983961847)
    a1 = 10.0 (exact 9.999999961872113)
    a0 = 0.0 (exact 1.7338066957762713e-08)

  Accuracy on [0.000 ; 2.030]:
    R2 = 1.0
    |err| <= 1.7338066957762713e-08
    |rel err| <= 1.7041982824835924e-07

  Copyable expression:
    f(x) = (-4.904999983961847) * x^2 + (9.999999961872113) * x + (1.7338066957762713e-08)

Synergy between --reg and --deriv/--zeros/--integral.

python -m chplot log2(x) -x 1 3 --deriv 1 --reg lin --zeros --integral

===== REGRESSION COEFFICIENTS OF THE FUNCTIONS =====

Regression function: reg(x) = a * x + b

- Function f(x) = log2(x)
  Coefficients:
    a = 0.76193 (exact 0.7619286641417374)
    b = -0.58912 (exact -0.5891228449973627)

  Accuracy on [1.000 ; 3.000]:
    R2 = 0.9808243468285833
    |err| <= 0.17280581914437476
    |rel err| <= 598.4874010749205

  Copyable expression:
    f(x) = (0.7619286641417374) * x + (-0.5891228449973627)



===== ZEROS OF THE FUNCTIONS =====
Note that non-continuous functions may give false zeros. Furthermore, some zeros may be missing if the graph is tangent to the x-axis.

Furthermore, on derivatives and file data, zeros are approximated using linear interpolation, and may be far from their real values.
- On the interval [1.0 ; 3.0], the function f(x) = log2(x) equals zero...
    at x = 1.0

- On the interval [1.0 ; 3.0], the function f(x) = Regression [log2(x)] never equals zero.

- On the interval [1.001 ; 2.999], the function f(x) = d/dx * (log2(x)) never equals zero.

- On the interval [1.001 ; 2.999], the function f(x) = d/dx * (Regression [log2(x)]) never equals zero.



===== INTEGRALS OF THE FUNCTIONS =====
Note that the more points, the smallest the error and that floating point numbers may introduce errors. Furthermore, discontinuous functions may indicate really huge error margins.
The x-axis limits on derivatives are slightly tighter because of the algorithm used. This may be counteracted by adding more points.

- ∫f(x)dx = 1.8694974171793488
    where f(x) = log2(x) on [1.0 ; 3.0]


- ∫f(x)dx = 1.8694689665720188
    where f(x) = Regression [log2(x)] on [1.0 ; 3.0]


- ∫f(x)dx = 1.583424040388957
    where f(x) = d/dx * (log2(x)) on [1.001 ; 2.999]


- ∫f(x)dx = 1.5226382424208345
    where f(x) = d/dx * (Regression [log2(x)]) on [1.001 ; 2.999]

Possible improvements

  • Parallelizing computation of expressions.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

chplot-1.0.1.post1.tar.gz (85.8 kB view details)

Uploaded Source

File details

Details for the file chplot-1.0.1.post1.tar.gz.

File metadata

  • Download URL: chplot-1.0.1.post1.tar.gz
  • Upload date:
  • Size: 85.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.1

File hashes

Hashes for chplot-1.0.1.post1.tar.gz
Algorithm Hash digest
SHA256 c1f0f03c47163af0504f870a47664a7a672dd88d3f150bb209f88529bd70ccf8
MD5 e7caabb6e25aa965410447496100be2a
BLAKE2b-256 98c7228a5a675ef3c68773f31d6d9288d952e03658858d0ca67bb554d06a9d3d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page