Skip to main content

Chroma.

Project description

Chroma logo

Chroma - the open-source embedding database.
The fastest way to build Python or JavaScript LLM apps with memory!

Discord | License | Docs | Homepage

pip install chromadb # python client
# for javascript, npm install chromadb!
# for client-server mode, chroma run --path /chroma_db_path

The core API is only 4 functions (run our 💡 Google Colab or Replit template):

import chromadb
# setup Chroma in-memory, for easy prototyping. Can add persistence easily!
client = chromadb.Client()

# Create collection. get_collection, get_or_create_collection, delete_collection also available!
collection = client.create_collection("all-my-documents")

# Add docs to the collection. Can also update and delete. Row-based API coming soon!
collection.add(
    documents=["This is document1", "This is document2"], # we handle tokenization, embedding, and indexing automatically. You can skip that and add your own embeddings as well
    metadatas=[{"source": "notion"}, {"source": "google-docs"}], # filter on these!
    ids=["doc1", "doc2"], # unique for each doc
)

# Query/search 2 most similar results. You can also .get by id
results = collection.query(
    query_texts=["This is a query document"],
    n_results=2,
    # where={"metadata_field": "is_equal_to_this"}, # optional filter
    # where_document={"$contains":"search_string"}  # optional filter
)

Features

  • Simple: Fully-typed, fully-tested, fully-documented == happiness
  • Integrations: 🦜️🔗 LangChain (python and js), 🦙 LlamaIndex and more soon
  • Dev, Test, Prod: the same API that runs in your python notebook, scales to your cluster
  • Feature-rich: Queries, filtering, density estimation and more
  • Free & Open Source: Apache 2.0 Licensed

Use case: ChatGPT for ______

For example, the "Chat your data" use case:

  1. Add documents to your database. You can pass in your own embeddings, embedding function, or let Chroma embed them for you.
  2. Query relevant documents with natural language.
  3. Compose documents into the context window of an LLM like GPT3 for additional summarization or analysis.

Embeddings?

What are embeddings?

  • Read the guide from OpenAI
  • Literal: Embedding something turns it from image/text/audio into a list of numbers. 🖼️ or 📄 => [1.2, 2.1, ....]. This process makes documents "understandable" to a machine learning model.
  • By analogy: An embedding represents the essence of a document. This enables documents and queries with the same essence to be "near" each other and therefore easy to find.
  • Technical: An embedding is the latent-space position of a document at a layer of a deep neural network. For models trained specifically to embed data, this is the last layer.
  • A small example: If you search your photos for "famous bridge in San Francisco". By embedding this query and comparing it to the embeddings of your photos and their metadata - it should return photos of the Golden Gate Bridge.

Embeddings databases (also known as vector databases) store embeddings and allow you to search by nearest neighbors rather than by substrings like a traditional database. By default, Chroma uses Sentence Transformers to embed for you but you can also use OpenAI embeddings, Cohere (multilingual) embeddings, or your own.

Get involved

Chroma is a rapidly developing project. We welcome PR contributors and ideas for how to improve the project.

Release Cadence We currently release new tagged versions of the pypi and npm packages on Mondays. Hotfixes go out at any time during the week.

License

Apache 2.0

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

chromadb-0.5.17.tar.gz (33.6 MB view details)

Uploaded Source

Built Distribution

chromadb-0.5.17-py3-none-any.whl (615.7 kB view details)

Uploaded Python 3

File details

Details for the file chromadb-0.5.17.tar.gz.

File metadata

  • Download URL: chromadb-0.5.17.tar.gz
  • Upload date:
  • Size: 33.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for chromadb-0.5.17.tar.gz
Algorithm Hash digest
SHA256 6d744dbab036d48d83c2425d3459006022dbcbe9e428affb011c72c91af04a39
MD5 8a2f8e60cf57571486db411dec78cb1c
BLAKE2b-256 f1bc4ef06fbf6b361bc8f6c7621040ab6d5c610910be0f18bb09bd05d704f9b8

See more details on using hashes here.

File details

Details for the file chromadb-0.5.17-py3-none-any.whl.

File metadata

  • Download URL: chromadb-0.5.17-py3-none-any.whl
  • Upload date:
  • Size: 615.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for chromadb-0.5.17-py3-none-any.whl
Algorithm Hash digest
SHA256 d1403b9f78678effdc42240759041272b4ead013ab205a16f656da923e542cae
MD5 424fd640873e62710b9d3446591f52ec
BLAKE2b-256 8917404a72e42bfaf37404039c134def6665de5166da922d2402a8e12de9eb49

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page